2.6 Mathematical Models: Building Functions

Exercise 1	Let $P = (x, y)$ be a point on the graph of $y = x^2 - 8$.
(#2 page 109)	a) Express the distance <i>d</i> from <i>P</i> to the point $(0, -1)$ as a function of <i>x</i> .
	 b) What is <i>d</i> if x = 0? c) What is <i>d</i> if x = -1?
	d) Use a graphing utility to graph $d = d(x)$.
	e) For what values of <i>x</i> is <i>d</i> smallest?
	1
Exercise 2	Let $P = (x, y)$ be a point on the graph of $y = \frac{1}{x}$.
(#4 page 109)	a) Express the distance d from P to the origin as a function of x.
	b) Use a graphing utility to graph $d = d(x)$.

c) For what values of *x* is *d* smallest?

Exercise 3	A right triangle has one vertex on the graph of $y = 9 - x^2$, $x > 0$, at (x, y) , another at the origin, and the
(#6 page 109)	third on the positive x-axis at $(x, 0)$. Express the area A of the triangle as a function of x.

Exercise 4 A rectangle is inscribed in a semicircle of radius 2. Let P = (x, y) be a point in quadrant I that is a vertex (#8 page 109) of the rectangle and is on the circle.

- a) Express the area *A* of the rectangle as a function of *x*.
- b) Express the perimeter *p* of the rectangle as a function of *x*.
- c) Graph A = A(x). For what values of x is A largest?
- d) Graph p = p(x). For what values of x is p largest?

Exercise 5 A wire 10 meters long is to be cut into two pieces. One piece will be shaped as an equilateral triangle, (#12 page 110) and the other piece will be shaped as a circle.

- a) Express the total area A enclose by the pieces of wire as a function of the length x of a side of the equilateral triangle.
- b) What is the domain of *A*?
- c) Graph A = A(x). For what values of x is A smallest?

Exercise 6 Two cars leave an intersection at the same time. One is headed south at a constant speed of 30 miles per (#18 page 110) hour, and the other is headed west at a constant speed of 40 miles per hour. Build a model that expresses the distance *d* between the cars as a function of the time.

Exercise 7 Inscribe a right circular cylinder of height h and radius r in a sphere of fixed radius R. Express the volume (#20 page 110) V of the cylinder as a function of h.

Exercise 8 Inscribe a right circular cylinder of height h and radius r in a cone of fixed radius R and fixed height H. (#21 page 110) Express the volume V of the cylinder as a function of r.

Exercise 9 MetroMedia Cable is asked to provide service to a customer whose house is located 2 miles from the road (#22 page 111) along which the cable is buried. The connection box for the cable is located 5 miles down the road.

- a) If the installation cost is \$500 per mile along the road and \$700 per mile off the road, build a model that expresses the total cost C of installation as a function of the distance x (in miles) from the connection box to the point where the cable installation turns off the road.
- b) Compute the cost if x = 1 mile.
- c) Compute the cost if x = 3 miles.
- d) Graph the function C = C(x).
- e) What values of x result in the least cost?

Exercise 10 Water is poured into a container in the shape of a right circular cone with radius 4 feet and height 16 feet. (#24 page 111) Express the volume V of the water in the cone as a function of the height h of the water.

Answers:

1) b)7, c)
$$\sqrt{37}$$
, e) ± 2.55 ; 2) c) ± 1 ; 3) $A(x) = \frac{9}{2}x - \frac{1}{2}x^3$ 4) a) $A(x) = 2x\sqrt{4 - x^2}$, b) $P(x) = 4x + 2\sqrt{4 - x^2}$
c) 1.41, d) 1.79; 5) b) $0 < x < 10/3$, c) 2.08; 6) $d(t) = 50t$; 6) $A(x) = \frac{\sqrt{3}}{4}x^2 + \frac{(10 - 3x)^2}{4p}$
7) $V(h) = ph\left(R^2 - \frac{h^2}{4}\right)$; 8) $V(t) = \frac{pH(R - r)r^2}{R}$; 9) a) $C(x) = 500x + 700\sqrt{x^2 - 10x + 29}$, b) 3630.50,
c) 3479.90, e) 2.96 mi; 10) $V(h) = \frac{p}{48}h^3$