
\#40 The number of miles M that a certain automobile can travel on one gallon of gasoline at a speed of $v \mathrm{mi} / \mathrm{hr}$ is given by

$$
M=-\frac{1}{30} v^{2}+\frac{5}{2} v \text { for } 0<v<70
$$

a) Find the most economical speed for a trip.
b) Find the largest value of M.
(A: $37.5 \mathrm{mi} / \mathrm{hr}$)
(A: $46.875 \mathrm{mi} / \mathrm{gal}$)
\#42 An object is projected vertically upward with an initial velocity of $v_{0} \mathrm{ft} / \mathrm{sec}$, and its distance $s(t)$ in feet above the ground after t seconds is given by the formula $s(t)=-16 t^{2}+v_{0} t$.
a) If the object hits the ground after 12 seconds, find its initial velocity.
(A: $192 \mathrm{ft} / \mathrm{sec}$)
b) Find its maximum distance above the ground.
(A: 576 ft)
\#50 Traffic engineers are designing a stretch of highway that will connect a horizontal highway with one having a 20% grade (what is the slope?). The smooth transition is to take place over a horizontal distance of 800 feet, with a parabolic piece of highway used to connect points A and B. If the equation of the parabolic segment is of the form $y=a x^{2}+b x+c$, it can be shown that the slope of the tangent line at the point $P(x, y)$ on the parabola is given by $m=2 a x+b$.
a) Find an equation of the parabola passes through A and \mathbf{B} - that is, the parabola that has a tangent line of slope 0 at A and $\frac{1}{5}$ at B.
(A: $y=\frac{1}{8000} x^{2}$)
b) Find the coordinates of B.
(A: $(800,80)$
\#51 A doorway has the shape of a parabolic arch and is 9 feet high at the center and 6 feet wide at the base. If a rectangular box 8 feet high must fit through the doorway, what is the maximum width the box can have? (A: 2 ft)
\# 54 A travel agency offers group tours at a rate of $\$ 60$ per person for the first 30 participants. For larger groups up to 90 - each person receives a $\$ 0.50$ discount for every participant in excess of 30 . For example, if 31 people participate, then the cost per person is $\$ 59.50$. Determine the size of the group that will produce the maximum amount of money for the agency.
(A: 75)

