VERTICAL SHIFTING (TRANSLATION)

Example \#1

Use the graph of

$$
f(x)=x^{2}
$$

to obtain the graphs of
$g(x)=x^{2}+1$
and

$$
h(x)=x^{2}-2 .
$$

\boldsymbol{x}	$f(x)=x^{2}$	$g(x)=x^{2}+1$	$h(x)=x^{2}-2$
-2			
$-\mathbf{1}$			
$\mathbf{0}$			
$\mathbf{1}$			
2			

VERTICAL SHIFTING : A vertical shifting does not change the shape of the graph but simply translates it to another position in the plane.

Equation	How to obtain the graph	Example
$y=$$f(x)+k$ $k>0$ Shift graph of $y=f(x)$ upward k units.	$g(x)=x^{2}+1$	
$y=f(x)-k$ $k>0$	Shift graph of $y=f(x)$ downward k units.	$h(x)=x^{2}-2$

HORIZONTAL SHIFTING (TRANSLATION)

Example \#2

Use the graph of

$$
f(x)=x^{2}
$$

to obtain the graphs of

$$
g(x)=(x-1)^{2}
$$

and

$$
h(x)=(x+1)^{2} .
$$

\boldsymbol{x}	$f(x)=x^{2}$	$g(x)=(x-1)^{2}$	$h(x)=(x+1)^{2}$
$-\mathbf{2}$			
$-\mathbf{1}$			
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$			

HORIZONTAL SHIFTING : A horizontal shifting doesn't change the shape of the graph but simply translates it to another position in the plane.

Equation	How to obtain the graph	Example
$y=$$f(x-h)$ $h>0$ Shift graph of $y=f(x)$ to the right h units.	$g(x)=(x-1)^{2}$	
$y=f(x+h)$ $h>0$	Shift graph of $y=f(x)$ to the left h units.	$h(x)=(x+1)^{2}$

VERTICAL STRETCHING AND SHRINKING

Example \#3

Use the graph of

$$
f(x)=|x|
$$

to obtain the graphs of

$$
g(x)=2|x|
$$

and

$$
h(x)=\frac{1}{2}|x|
$$

\boldsymbol{x}	$f(x)=\|x\|$	$g(x)=2\|x\|$	$h(x)=\frac{1}{2}\|x\|$
$\mathbf{- 2}$			
$\mathbf{- 1}$			
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$			

VERTICAL STRETCHING AND SHRINKING

Equation	How to obtain the graph	Example
$y=a f(x)$ $a>1$	Stretch the graph of $y=f(x)$ vertically by a factor of a.	$g(x)=2\|x\|$
$y=a f(x)$ $0<a<1$	Compress the graph of $y=f(x)$ vertically by a factor of $\frac{1}{a} \cdot$	$h(x)=\frac{1}{2}\|x\|$

HORIZONTAL STRETCHING AND SHRINKING

Example \#4 .

Use the graph of

$$
f(x)=\sqrt{x}
$$

to obtain the graphs of

$$
g(x)=\sqrt{2 x}
$$

and

$$
h(x)=\sqrt{\frac{1}{2} x} .
$$

\boldsymbol{x}	$f(x)=\sqrt{x}$	$g(x)=\sqrt{2 x}$	$h(x)=\sqrt{\frac{1}{2} x}$
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{4}$			
$\mathbf{9}$			

Equation	How to obtain the graph	Example
$y=f(a x)$ $a>1$	Compress the graph of $y=f(x)$ horizontally by a factor of a.	$g(x)=\sqrt{2 x}$
$y=f(a x)$ $0<a<1$	Stretch the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{a}$.	$h(x)=\sqrt{\frac{1}{2}} x$

REFLECTION ABOUT THE AXES

Example \#5

Use the graph of

$$
f(x)=\sqrt{x}
$$

to obtain the graphs of

$$
g(x)=-\sqrt{x}
$$

and

$$
h(x)=\sqrt{-x}
$$

\boldsymbol{x}	$f(x)=\sqrt{x}$	$g(x)=-\sqrt{x}$	$h(x)=\sqrt{-x}$
$-\mathbf{4}$			
$\mathbf{- 1}$			
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{4}$			

REFLECTION ABOUT THE AXES

Equation	How to obtain the graph	Example
$y=-f(x)$	Reflect the graph of $y=f(x)$ about the x-axis.	$g(x)=-\sqrt{x}$
$y=f(-x)$	Reflect the graph of $y=f(x)$ about the y-axis.	$h(x)=\sqrt{-x}$

Exercise \#1 .

Graph $f(x)=\sin x+2$ over one period.

Exercise \#2

Graph $g(x)=\cos \left(x-\frac{\pi}{2}\right)$ over one period.

Exercise \#3 Find the function that is finally graphed after the following transformations are applied to
the graph of
a) $f(x)=\sqrt{x}$;
b) $g(x)=x^{3}$.

1) Shift left 3 units
2) Shift up 1 unit.

Exercise \#4
The graph of $y=f(x)$ is shown. Sketch the graph of each function:
a) $y=f(x+1)$
b) $y=f(x)-2$.
c) $y=-f(x)$
d) $y=f(-x)$

Exercise \#5 Suppose the point $(8,12)$ is on the graph of $y=f(x)$. Find a point on the graph of each function.
a) $y=f(x+4)$
b) $y=f(x)+4$
c) $y=\frac{1}{4} f(x)$
d) $y=4 f(x)$

Exercise \#6 Graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages.
a) $f(x)=2(x-2)^{2}-4$

Find the exact intercepts.
Find domain and range.

b) $g(x)=-|x+3|+2$

c) $h(x)=\sqrt{-x-3}+2$

Find the exact intercepts.
Find domain and range.

