Math 160

VERTICAL SHIFTING

Equation	How to obtain the graph	Example
y = f(x) + k $k > 0$	Shift graph of $y = f(x)$ upward k units.	$g\left(x\right) = x^2 + 1$
y = f(x) - k $k > 0$	Shift graph of $y = f(x)$ downward k units.	$h(x) = x^2 - 2$

Exercise #2 .

Use the graph of f(x) = |x|to obtain the graph of g(x) = |x| + 2.

HORIZONTAL SHIFTING

Equation	How to obtain the graph	Example
y = f(x-h) $h > 0$	Shift graph of $y = f(x)$ to the right <i>h</i> units.	$g(x) = (x-1)^2$
y = f(x+h) $h > 0$	Shift graph of $y = f(x)$ to the left <i>h</i> units.	$h(x) = (x+1)^2$

2

VERTICAL STRETCH AND COMPRESSION

Equation	How to obtain the graph	Example
y = af(x) $a > 1$	Stretch the graph of $y = f(x)$ vertically by a factor of <i>a</i> .	g(x) = 2 x
y = af(x) $0 < a < 1$	Compress the graph of $y = f(x)$ vertically by a factor of $\frac{1}{a}$.	$h(x) = \frac{1}{2} x $

HORIZONTAL COMPRESSION AND STRETCH

Equation	How to obtain the graph	Example
y = f(ax) $a > 1$	Compress the graph of $y = f(x)$ horizontally by a factor of a .	$g(x) = \sqrt{2x}$
y = f(ax) $0 < a < 1$	Stretch the graph of $y = f(x)$ horizontally by a factor of $\frac{1}{a}$.	$h(x) = \sqrt{\frac{1}{2}x}$

3

2) Shift up 1 unit.

Exercise #8 The graph of y = f(x) is shown. Sketch the graph of each function:

a)
$$y = f(2x)$$
 b) $y = f(\frac{1}{2}x)$.

a)
$$H(x) = f(x+1)-2$$

b) $Q(x) = \frac{1}{2}f(x)$.

Exercise #10 If (0,3) is a point on the graph of y = f(x), which of the following points must be on the graph of y = 2f(x)? a) (0,3)b) (0,2)c) (0,6)d) (6,0).

REFLECTION ABOUT THE AXES

Equation	How to obtain the graph	Example
y = -f(x)	Reflect the graph of $y = f(x)$ about the x-axis.	$g(x) = -\sqrt{x}$
y = f(-x)	Reflect the graph of $y = f(x)$ about the y-axis.	$h(x) = \sqrt{-x}$

Exercise #12 Graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages.

a)
$$f(x) = \frac{1}{-x} + 2$$
 b) $g(x) = -(x+1)^3 - 1$