VERTICAL SHIFTING

Exercise \#1

Use the graph of

$$
f(x)=x^{2}
$$

to obtain the graphs of

$$
g(x)=x^{2}+1
$$

and

$$
h(x)=x^{2}-2 .
$$

Equation	How to obtain the graph	Example
$y=f(x)+k$ $k>0$	Shift graph of $y=f(x)$ upward k units.	$g(x)=x^{2}+1$
$y=f(x)-k$ $k>0$	Shift graph of $y=f(x)$ downward k units.	$h(x)=x^{2}-2$

Exercise \#2

Use the graph of

$$
f(x)=|x|
$$

to obtain the graph of
$g(x)=|x|+2$.

HORIZONTAL SHIFTING

Exercise \#3

Use the graph of

$$
f(x)=x^{2}
$$

to obtain the graphs of

$$
g(x)=(x-1)^{2}
$$

and

$$
h(x)=(x+1)^{2} .
$$

Equation	How to obtain the graph	Example
$y=f(x-h)$ $h>0$	Shift graph of $y=f(x)$ to the right h units.	$g(x)=(x-1)^{2}$
$y=f(x+h)$ $h>0$	Shift graph of $y=f(x)$ to the left h units.	$h(x)=(x+1)^{2}$

Exercise \#4

Use the graph of

$$
f(x)=\sqrt{x}
$$

to obtain the graph of $g(x)=\sqrt{x-3}$.

VERTICAL STRETCH AND COMPRESSION

Exercise \#5

Use the graph of

$$
f(x)=|x|
$$

to obtain the graphs of

$$
g(x)=2|x|
$$

and

$$
h(x)=\frac{1}{2}|x|
$$

Equation	How to obtain the graph	Example
$y=a f(x)$ $a>1$	Stretch the graph of $y=f(x)$ vertically by a factor of a.	$g(x)=2\|x\|$
$y=a f(x)$ $0<a<1$	Compress the graph of $y=f(x)$ vertically by a factor of $\frac{1}{a} \cdot$	$h(x)=\frac{1}{2}\|x\|$

HORIZONTAL COMPRESSION AND STRETCH

Exercise \#6

Use the graph of

$$
f(x)=\sqrt{x}
$$

to obtain the graphs of

$$
g(x)=\sqrt{2 x}
$$

and

$$
h(x)=\sqrt{\frac{1}{2} x}
$$

Equation	How to obtain the graph	Example
$y=f(a x)$ $a>1$	Compress the graph of $y=f(x)$ horizontally by a factor of a.	$g(x)=\sqrt{2 x}$
$y=f(a x)$ $0<a<1$	Stretch the graph of $y=f(x)$ horizontally by a factor of $\frac{1}{a}$.	$h(x)=\sqrt{\frac{1}{2}} x$

Exercise \#7

Exercise \#8

Find the function that is finally graphed after the following transformations are applied to $\begin{array}{lll}\text { the graph of } & \text { a) } f(x)=\sqrt{x} ; & \text { b) } g(x)=x^{3} .\end{array}$

1) Shift left 3 units
2) Shift up 1 unit.

The graph of $y=f(x)$ is shown. Sketch the graph of each function:
a) $y=f(2 x)$
b) $y=f\left(\frac{1}{2} x\right)$.

Exercise \#9
The graph of $y=f(x)$ is shown. Sketch the graph of each function:
a) $H(x)=f(x+1)-2$
b) $Q(x)=\frac{1}{2} f(x)$.

Exercise \#10 If $(0,3)$ is a point on the graph of $y=f(x)$, which of the following points must be on the graph of $y=2 f(x)$?
a) $(0,3)$
b) $(0,2)$
c) $(0,6)$
d) $(6,0)$.

REFLECTION ABOUT THE AXES

Exercise \#11

Use the graph of

$$
f(x)=\sqrt{x}
$$

to obtain the graphs of

$$
g(x)=-\sqrt{x}
$$

and

$$
h(x)=\sqrt{-x}
$$

Equation	How to obtain the graph	Example
$y=-f(x)$	Reflect the graph of $y=f(x)$ about the x-axis.	$g(x)=-\sqrt{x}$
$y=f(-x)$	Reflect the graph of $y=f(x)$ about the y-axis.	$h(x)=\sqrt{-x}$

Exercise \#12 Graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all stages.
a) $f(x)=\frac{1}{-x}+2$
b) $g(x)=-(x+1)^{3}-1$

