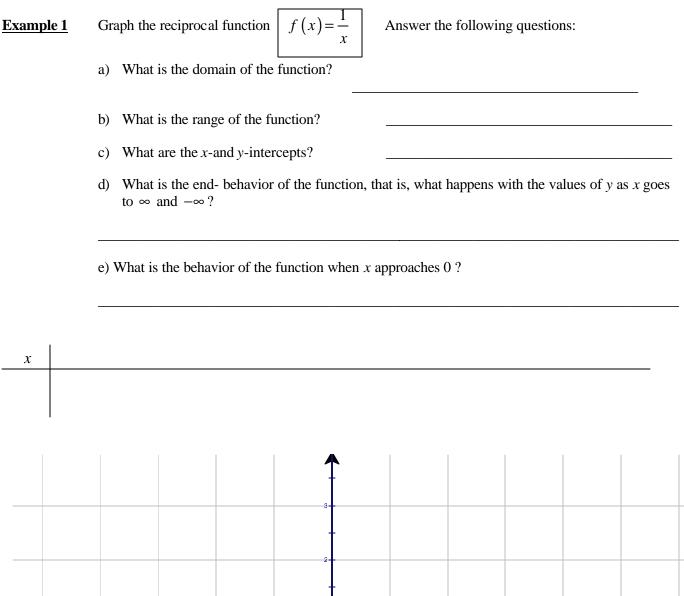
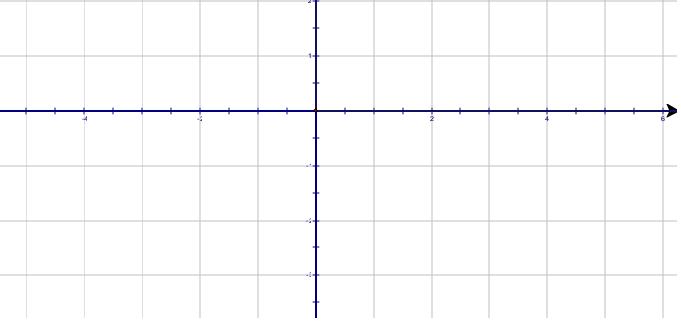
3.5&3.6 Graphs of Rational Functions

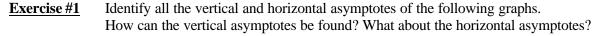


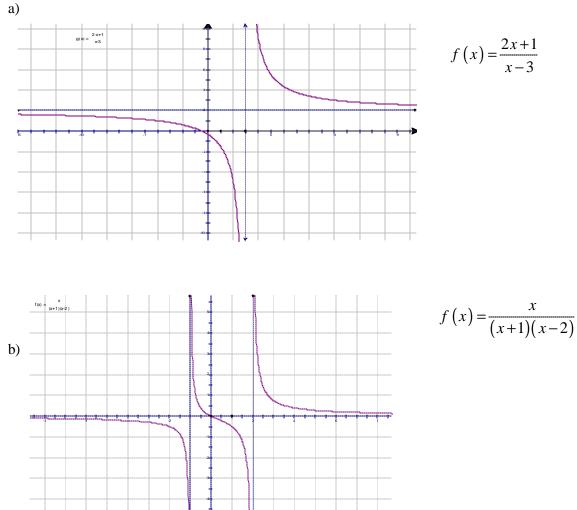


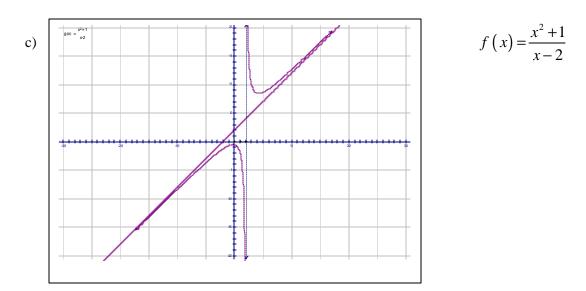
<u>Definition</u> A rational function is a function f of the form $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials, with $q(x) \neq 0$.

Notations:	$x \rightarrow \infty$	<i>x</i> approaches infinity (x increases without bound)
	$x \rightarrow -\infty$	<i>x</i> approaches negative infinity (<i>x</i> decreases without bound)
	$x \rightarrow a^+$	<i>x</i> approaches a from the right
	$x \rightarrow a^{-}$	<i>x</i> approaches a from the left

Definition The line x = a is a **vertical asymptote** for the graph of f(x) if, when $x \to a$, $y \to \pm \infty$. The line y = b is a **horizontal asymptote** for the graph of f(x) if, when $x \to \pm \infty$, $y \to b$.







Asymptotes for a rational function $f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_0}{b_m x^m + \dots + b_0}$

1. The vertical asymptotes are the lines x = c, where *c* is a zero of the denominator (but not a zero of the numerator).

2. If n < m, then y = 0 (the *x*-axis) is the **horizontal asymptote.**

If
$$n = m$$
, then $y = \frac{a_n}{b_n}$ is the **horizontal asymptote.**

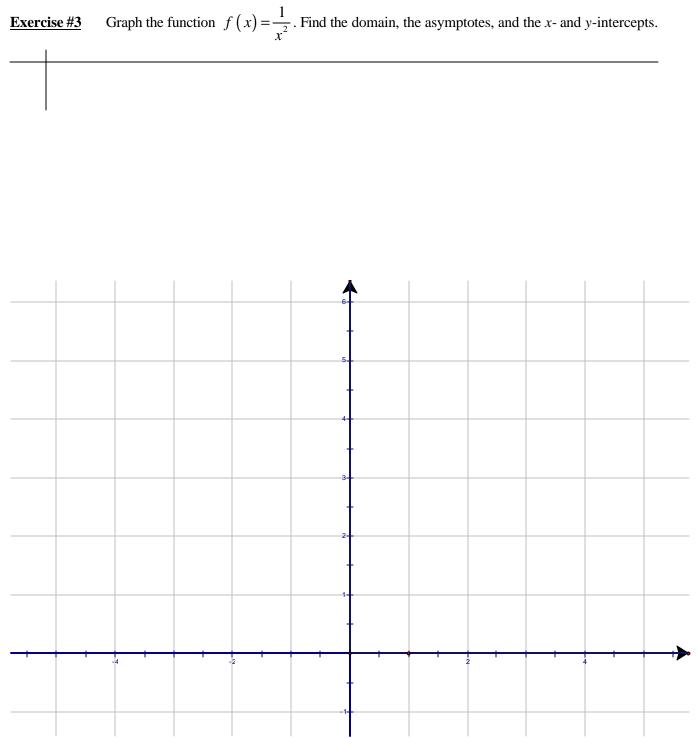
If n > m, there are **no horizontal asymptotes.**

If, however, n = m+1, then there is an oblique asymptote. Divide the numerator by the denominator and disregard the remainder.

y = quotient is the oblique asymptote

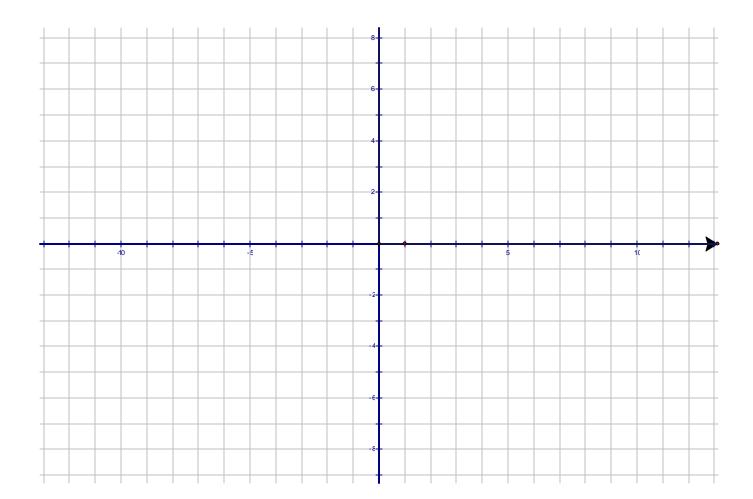
Exercise #2 Identify all the asymptotes for the following functions:

$$f(x) = \frac{2x+7}{x-5} \qquad g(x) = \frac{4x^2+x-5}{2x^2-3x-5} \qquad h(x) = \frac{x^2+6}{x-3} \qquad l(x) = \frac{1}{2x^2-2}$$

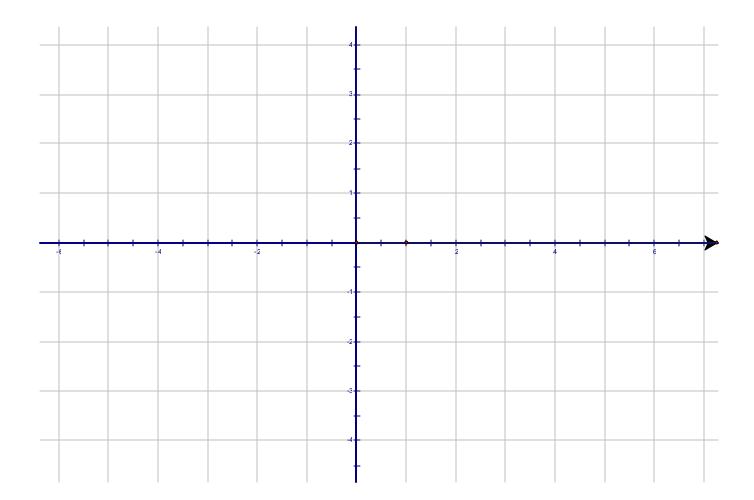


Exercise #4 Show how to obtain the graph of $g(x) = \frac{1}{(x+1)^2} + 1$ from the graph of $f(x) = \frac{1}{x^2}$. What are the asymptotes of g(x)?

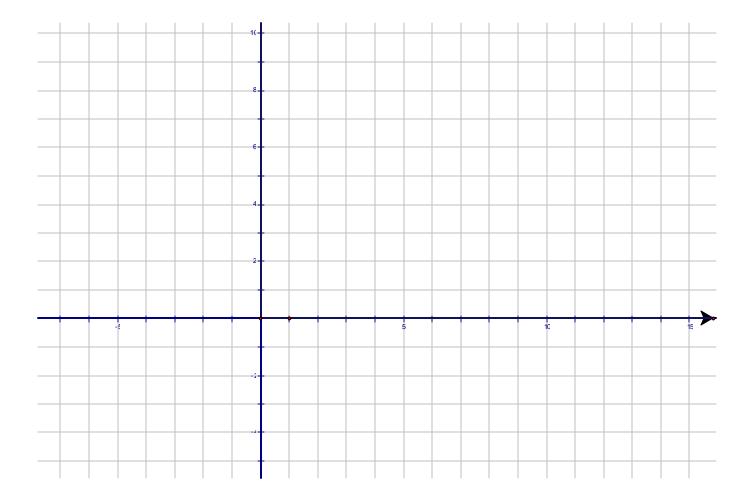
Exercise #5 Sketch the graph of $f(x) = \frac{x+1}{x-4}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.



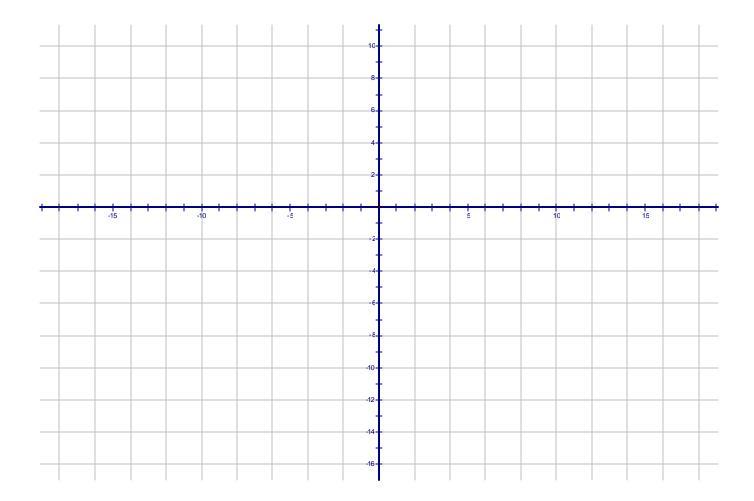
Exercise #6 Sketch the graph of $f(x) = \frac{x-2}{x^2-1}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

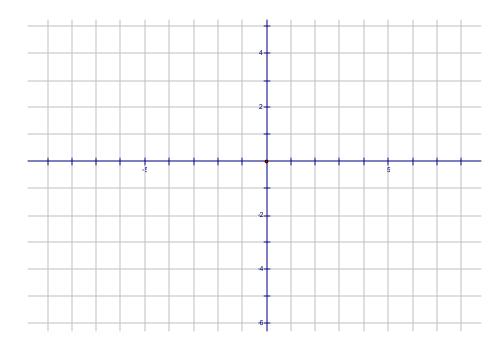


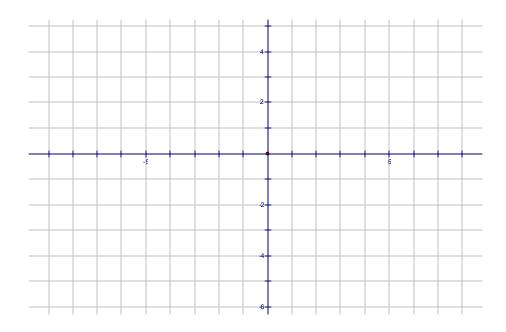
Exercise #7 Sketch the graph of $f(x) = \frac{x^2 - 2x - 8}{x^2 - 4x + 3}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.



Exercise #8 Sketch the graph of $f(x) = \frac{x^2 + 1}{x + 3}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.







3.5 Graphs of Rational Functions - Applications

1. The rabbit population on Mr. Jenkins's farm follows the formula

$$p(t) = \frac{3000t}{t+1}$$

where $t \ge 0$ is the time (in months) since the beginning of the year.

- a) Sketch a graph of the rabbit population.
- b) What eventually happens to the rabbit population?

2. Using rational functions to model bacterial growth

A group of agricultural scientists has been studying how the growth of a particular type of bacteria is affected by the acidity level of the soil. One colony of the bacteria is placed in a soil that is slightly acidic. A second colony of the same size is placed in a neutral soil. Suppose that after analyzing the data, the scientists determine that the size of each population over time can be modeled by the following functions.

Colony of neutral soil: y =

$$v = \frac{2t+1}{t+1}, t \ge 0$$

Colony of acidic soil: $y = \frac{4t+3}{t^2+3}, t \ge 0$

In both cases, y represents the population, in thousands, after t hours.

- a) What is the initial population for each colony?
- b) Determine the long-term behavior of each colony.

3. Electrical Resistance

When two resistors with resistances R_1 and R_2 are connected in parallel, their combined resistance R is given by the formula

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor. If the resistance of the variable resistor is denoted by x, then the combined resistance R is a function of x. Graph R and give a physical interpretation of the graph.