Math
www.timetodare.com

Section 3.1

Quadratic Functions and Models

Quadratic Function: $\quad f(x)=a x^{2}+b x+c \quad(a \neq 0)$
The graph of a quadratic function is called a parabola.

Graphing Parabolas: Special Cases

The "basic" parabola is the graph of the simplest quadratic function $y=x^{2}$.

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

All parabolas share certain features.
Vertex - the lowest point (if the parabola opens up) or the highest point (if the parabola opens down).
The vertex of the basic parabola is $V(0,0)$
Axis of symmetry - the parabola is symmetric about the vertical line that runs through the vertex.
The axis of symmetry of the basic parabola is $x=0$. (the y-axis)
y-intercept - the point where the parabola intersects the y-axis.
x-intercep ts) - the points) where the parabola intersects the x-axis.
The x - and y -intercept of the basic parabola is \qquad

Example \#1 Graph the following parabolas on the same coordinate system:

1) $y=x^{2}$
2) $y=2 x^{2}$
3) $y=\frac{1}{2} x^{2}$
4) $y=-x^{2}$
5) $y=-2 x^{2}$

Investigate the effect of the coefficient of x^{2} on the graph.

$y=2 x^{2}$. it graph is obtained form the graph of $y=x^{2}$ intetched vertically by a factor of 2 (graph is narrower)
$y=\frac{1}{2} x^{2}$ is stained from the graph of $y=\frac{1}{2} x^{2}$ by shrinking it vortically by a factor of 2 (staph is wider)
$y=-x^{2}$ is obtained by reflecting the soph of $y=x^{2}$ across

What are the effects of the coefficient a of x^{2} on the graph?
If $a>0$, the parabola opens_upward vertex = minimum.
If $a<0$, the parabola opens downward \downarrow. vertex = maximum

How to Graph a Parabola

Standard form: $y=a x^{2}+b x+c \quad(a \neq 0)$
Note that if $a>0$, the parabola opens upward, and if $a<0$, the parabola opens downward.
Vertex $\quad V\left(x_{v}, y_{v}\right) \quad \begin{aligned} & x_{v}=\frac{-b}{2 a} \\ & \begin{array}{c}\text { To find } y_{v} \text { substitute the value of } x_{v} \text { in the equation and } \\ \text { solve for } y .\end{array}\end{aligned}$
\mathbf{y}-intercept \quad To find the y-intercept make $x=0$ and solve for y.
\mathbf{x}-intercept(s) To find the x-intercept(s) make $y=0$ and solve for x.
(if any)

Note: The parabola is symmetric about the vertical axis that passes through the vertex. If no x-intercept, use the symmetric of the y-intercept about the axis of symmetry to graph the parabola

The Vertex Form of a Parabola:

$$
\begin{gathered}
y=a\left(x-x_{v}\right)^{2}+y_{v}
\end{gathered} \text {, where } V\left(x_{v}, y_{v}\right) \text { is the vertex and } a \text { is the }
$$

Exercise \#1:
(a) Graph the following parabola: $y=x^{2}+3 x+2$. Give the domain and range. Varabola. ores up $\quad(a=1>0)$
Vertex: $V\left(x_{v}, y_{v}\right)$

$$
\begin{aligned}
x_{v} & =\frac{-6}{2 a}=\frac{-3}{2} \\
y_{v} & =\left(\frac{-3}{2}\right)^{2}+3\left(\frac{-3}{2}\right)+2= \\
& =\frac{9}{4}-\frac{9}{2}+2=\frac{-9}{4}+2=\frac{-1}{4}
\end{aligned}
$$

y-intercept:

$$
x=0, y=2
$$

x -intercepts:

$$
\begin{gathered}
y=0 \\
x^{2}+3 x+2=0 \\
(x+1)(x+2)=0 \\
x=-1 \text { or } x=-2
\end{gathered}
$$

Domain: $x \in \mathbb{R}$
Range: $y \in\left[-\frac{1}{4}, 4\right]$
(b) Graph the following parabola: $y=-2 x^{2}+4 x+1$. Give the domain and range.

Vorabola opus down $(a=-2<0)$
Vertex: $V\left(x_{v}, y_{v}\right)$

$$
\begin{aligned}
& x_{v}=\frac{-b}{2 a}=\frac{-4}{2(-2)}=1 \quad V(1,3) \\
& y_{v}=-2(1)^{2}+4(1)+1=3 \\
& y \text {-intercept: } \\
& x=0, y=1 \quad(0,1)
\end{aligned}
$$

x-intercepts:

$$
\begin{aligned}
& y=0 \\
&- 2 x^{2}+4 x+1=0 \\
& 2 x^{2}-4 x-1=0 \\
& x_{1,2}= \frac{-b \pm \sqrt{6^{2}-4 a c}}{2 a}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(-1)}}{2(2)} \\
&= \frac{4 \pm \sqrt{16+8}}{4}=\frac{4 \pm \sqrt{24}}{4}=\frac{4 \pm 2 \sqrt{6}}{4} \\
&= \frac{2 \pm \sqrt{6}}{2}<x_{1} \simeq 2.2 \\
& x_{2} \simeq-0.2
\end{aligned}
$$

Exercise \#2: Find the vertex of each parabola. Decide whether the vertex is a maximum or a minimum point. Give the domain and the range.
(a) $y=2(x-3)^{2}+4$. Graph the function explaining how its graph is obtained from the graph of the basic parabola.

Sst $y=x^{2}$
and $y=(x-3)^{2}$ horizontal shift to the rift 3 units
ard $y=2(x-3)^{2}$ vertical stretch of the previous graph by a factor of 2 th $y=2(x-3)^{2}+4$ vertical shift up 4 units (of the velvious grope)
$y=2(x-3)^{2}+4 \quad-$ parabola oteroид $(a=2>0)$ op
$V(3,4)$ - minimum point. (the equation is ni vertex for mu $y=a(x-x v)^{2}+y v$)
Domain: $\quad x \in \mathbb{R}$
Range: $\quad y \in[4, \infty)$

(b) $y=-3(x+3)^{2}-5$. Graph the function explaining how its graph is obtained from the graph of the basic parabola.
$=$ porabala offers down $V(-3,-5)$
list $y=x^{2}$
and $y=-x^{2}$ refuct the grope of $y=x^{2}$ about the x-axis
ard $y=-3 x^{2}$ stench vertically (by a factor y_{3}) the grope of $y=-x^{2}$
4 th $y=-3(x+3)^{2}$ shift left 3 units the grope of $y=-3 x^{2}$
5th $y=-3(x+3)^{2}-5$ shift down 5 units the graph of $y=-3(x+3)^{2}$

(c) $y=3 x^{2}+4 x+2$. Graph this parabola by writing its equation in vertex form first (by completing the square on x).
I Completing the sq wore ix

$$
\begin{aligned}
& y=3\left(x^{2}+\frac{4}{3} x\right)+2 \\
& \left(\frac{1}{2} \cos x\right)^{2}=\left(\frac{1}{2} \cdot \frac{4}{3}\right)^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& y=3\left(x^{2}+\frac{4}{3} x+\frac{4}{9}\right)+2-\frac{4}{3} \\
& y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3} \quad V\left(-\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { II or, find } V\left(x_{v} M_{v}\right) \\
x_{y}=\frac{-b}{2 a}=\frac{-4}{6}=\frac{-2}{3} \\
y_{y}=3\left(\frac{-2}{3}\right)^{2}+4\left(\frac{-2}{3}\right)+2=\frac{2}{3} \\
V\left(-\frac{2}{3}, \frac{2}{3}\right) \\
y=a\left(x-x_{v}\right)^{2}+y y \\
y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}
\end{gathered}
$$

lIst $y=x^{2}$
and $y=3 x^{2}$ wotical stretch by a factor of 3
3rd $y=3\left(x+\frac{2}{3}\right)^{2}$ hon'pontol shift to the eft $\frac{2}{3}$ (af the me nous graph)
th $y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}$ vertical shift up $\frac{2}{3}$ (of the furious grope)

Exercise \#3: Write an equation for each graph. Give the domain and range.
(a)

Given: $\quad(-2,0)$ vortex

$$
\begin{aligned}
& y=a\left(x-x_{y}\right)^{2}+y_{v} \\
& y=a(x+2)^{2}+6
\end{aligned}
$$

$(0,18) \in g r o p h \Rightarrow$
when $x=0, y=18$

$$
\begin{aligned}
& 18=a(o+2)^{2}+6 \\
& 18=4 a+6 \Rightarrow a=3
\end{aligned}
$$

Therefore, the parabola is $y=3(x+2)^{2}+6$

(b)

$$
\left.\begin{array}{rc}
\text { Given } & (-3,0) \\
(2,0)
\end{array}\right) x \text {-inter }
$$

$$
y=a(x+3)(x-2)
$$

$$
(0,-6) \in g \text { pooh } \Rightarrow \text { when } x=0, y=-6
$$

$$
-6=a(0+3)(0-2)
$$

$$
-6=-6 a \quad \Rightarrow \quad a=1
$$

Thenfore, the poralola i'
8

$$
\begin{aligned}
& y=(x+3)(x-2) \\
& y=x^{2}+x-6
\end{aligned}
$$

(c)

Giren $(1,3)$
$(3,5)$ points (4,9)
folte the 3×3 ryotem.
(1) $<a+b+c=3$
(2) $9 a+3 b+c=5$
(3) $16 a+4 b+c=9$
(2) -(1)

$$
\begin{align*}
& 8 a+2 b=2 \\
& 4 a+b=1 \tag{4}
\end{align*}
$$

(3) -(2) $7 a+b=4$

$$
\begin{aligned}
& \text { (4) }\left\{\begin{array}{l}
4 a+b=1 \\
\text { (5) } 7 a+b=4
\end{array}\right. \\
& \text { (-3a=-3 }-a=1 \\
& 4 a+b=1 \\
& 4+b=1 \\
& b=-3 \\
& a+b+c=3 \\
& 1-3+c=3
\end{aligned}
$$

Exercise \#4 If air resistance is neglected, the height s (in feet) of an object propelled directly upward from a an initial height s_{0} feet with initial velocity v_{0} feet per second is

$$
s(t)=-16 t^{2}+v_{0} t+s_{0}
$$

So = initial height where t is the number of seconds after the object is propelled.
$v_{0}=$ initial velocity

A toy rocket is launched straight up from the top of a building 50 ft tall at an initial velocity of 200 ft per sec.

$$
S_{0}=50
$$

$$
v_{0}=200
$$

$t=t i m e$

$$
s(t)=\text { height }
$$

a) Give the function that describes the height of the rocket in terms of t.

$$
s(t)=-16 t^{2}+200 t+50 \text { werabla op res downwate }
$$

b) Determine the time at which the rocket reaches its maximum height, and the maximum height in feet.
The maximum will recur at the vertex $V\left(t_{v}, s_{v}\right)$

$$
\begin{aligned}
t_{v} & =\frac{-b}{2 a}=\frac{-200}{2(-16)}=6.25 \mathrm{scc} \\
s_{v} & =-16(6.25)^{2}+200(6.25)+50 \\
& =675 t t
\end{aligned}
$$

Therefore, the rocket will
reach ito maximum height after 6.25 occ end the wax. height will he 675 ft
c) For what interval will the rocket be more than 300 feet above the ground level?
$t=?$ so that $s(t)>300$

$$
\begin{aligned}
& -16 t^{2}+200 t+50>300 \\
& 16 t^{2}-200 t-50+300<0 \\
& 16 t^{2}-200 t+250<0 \mid \div 2 \\
& 8 t^{2}-100 t+125<0
\end{aligned}
$$

Moralala opus up

d) After how many seconds will it hit the ground?

$$
t=? \text { so that } s(t)=0
$$

$$
\begin{array}{ll}
-16 t^{2}+200 t+50=0 \\
16 t^{2}-200 t-50=0 \\
8 t^{2}-100 t-25=0 & (-1) \\
\hline 2
\end{array}
$$

$$
t_{112}=\frac{100 \pm \sqrt{100^{2}-4 \cdot 8(-25)}}{2(8)} \simeq \frac{100 \pm 104}{16}
$$

The rocket will hit the
ground after 12.75 second.

Exercise \#5: Suppose that x represents one of two positive numbers whose sum is 30 . (3.1-\#51)
a) Represent the other of the two numbers in terms of x.

$$
x+\square=30
$$

$$
30-x
$$

b) What are the restrictions on x ?

$$
0<x<30
$$

c) Determine a function f that represents the product of these two numbers.

$$
\begin{aligned}
& f(x)=x(30-x) \\
& f(x)=-x^{2}+30 x
\end{aligned}
$$

d) What are the two such numbers that yield the maximum product? What is their product?

$$
\begin{gathered}
f(x)=-x^{2}+30 x \text { parabola opens donn } \Rightarrow \text { maximum } \\
\text { occurs at the vertex }
\end{gathered}
$$ recurs at the vertex

$V\left(x_{v}, y_{v}\right)$, where $x=15 t$ m umber
$y=f(x)=$ the poo duct of the two mu mbers.

$$
\begin{aligned}
& x_{v}=\frac{-b}{2 a}=\frac{-30}{2(-1)}=15 \\
& y_{v}=-15^{2}+30(15)=225
\end{aligned}
$$

Therefor, the list \# is 15 the and it is also 15 oud their product is 225 .
e) For what two such numbers is the product equal to 104 ?

$$
\begin{aligned}
x=? & \infty \text { that } f(x)=104 \\
& -x^{2}+30 x=104 \\
& x^{2}-30 x+104=0 \\
x_{112}= & \frac{30 \pm \sqrt{30^{2}-4(104)}}{2(1)}=\frac{30 \pm \sqrt{900-416}}{2}=\frac{30 \pm \sqrt{484}}{2} \\
= & \frac{30 \pm 22}{2} \quad \frac{52}{2}=26
\end{aligned}
$$

If the st roomer is 26, then the $2 n d$ number is $30-26=4$ the $2 n d$ number 104 , then the and number io 30-4=26

The number must th 26 end 4 it order for the undenct to be 104.

Exercise \#6 One campus has plans to construct a rectangular parking lot on land bordered on one side by a highway. There are 640 ft of fencing available to fence the other three sides. Let x represent the length of each of the two parallel sides of fencing.

a) Represent the length of the remaining side to be fenced in terms of x.

$$
2 x+l=640 \Rightarrow \mid=640-2 x
$$

b) What are the restrictions on x ?

$$
0<x<\frac{640}{2} \quad 0<x<320
$$

c) Determine a function A that represents the area of the parking lot in terms of x.

$$
A=l \cdot x \quad A(x)=x(640-2 x) \quad A(x)=-2 x^{2}+640 x
$$

d) Determine the values of x that will give an area between 30,000 and 40,000 sq.ft.

$$
x=? \text { so that } 30,000 \leqslant-2 x^{2}+640 x \leqslant 40,000
$$

$$
\begin{gather*}
\text { (1) } 30,000 \leq-2 x^{2}+640 x \\
2 x^{2}-640 x+30,000 \leq 0 \\
x^{2}-320 x+15,000 \leq 0 \\
\frac{+1}{x_{1}-\lambda_{x_{2}}} \quad x_{112}=\frac{320 \pm \sqrt{(320)^{2}-4(15,00)}}{2(1)} \\
\simeq \frac{320 \pm 206}{2}<\begin{array}{l}
574 \\
263+t
\end{array} \\
x \in[57,263]
\end{gather*}
$$

$$
\text { (2) } \begin{aligned}
&-2 x^{2}+640 x \leq 40,000 \\
& 2 x^{2}-640 x+40,000 \geqslant 0 \\
& x^{2}-320 x+20,000 \geqslant 0+1 \quad 7+ \\
& x_{3,4}=\frac{320 \pm \sqrt{(320)^{2}-4(20,000)}}{2(1)} \\
& \approx \frac{320 \pm 149.6}{2}<85.2 \mathrm{ft} \\
& 234.8 \mathrm{ft} \\
& x \in(0,852] \cup[234.8,0)
\end{aligned}
$$

Condition (1) and (2):
e) What dimensions will give a maximum area, and what will this area be?

$$
x \in[57,2,63 \cap(0,0,85[] \cup[234,8,4)
$$

e)

$$
A(x)=-2 x^{2}+640 x \text { downward }
$$

max.recurs at the vertex

$$
\begin{aligned}
& \left.V\left(x_{v}\right) A_{v}\right) \\
& x_{v}=\frac{-b}{2 a}=\frac{-640}{2(-2)}=160 \psi t
\end{aligned}
$$

Max area rems if the width $x=160$ ft
then the angth $l=640-2 x$

$$
l=640-2(160)=320 t
$$

The mot. area is

$$
\begin{aligned}
& \text { mot. area } 13 \\
& 160(320)=51,200 \psi t^{2}
\end{aligned}
$$

Exercise \#7 A frog leaps from a stump 3 ft high and lands 4 ft from the base of the stump. We can consider (3.1-\# 57) the initial position of the frog to be $(0,3)$ and its landing position to be at $(4,0)$. It is determined that the height of the frog as a function of its horizontal distance x from the base of the stump is given by $h(x)=-0.5 x^{2}+1.25 x+3$, where x and $h(x)$ are both in feet.

$$
\begin{aligned}
& x=\text { hon }+ \text { vtol } \\
& h(x)=\text { hes } h+
\end{aligned}
$$

a) How high was the frog when its horizontal distance from the base of the stump was 2 ft ?

$$
h=? \text { when } x=2
$$

$$
\begin{aligned}
h(2) & =-0.5(2)^{2}+1.25(2)+3 \\
& =3.5 \mathrm{ft}
\end{aligned}
$$

b) At what horizontal distances from the base of the stump was the frog 3.25 ft above the ground?

$$
\begin{aligned}
& x=\text { ? when } h=3.25 t t \\
& -0.5 x^{2}+1.25 x+3=3.25 \\
& 0.5 x^{2}-1.25 x+0.25=0 \\
& x_{112}=\frac{1.25 \pm \sqrt{(1.25)^{2}-4(0.5)(0.25)}}{2(0.5)}=\frac{1.25 \pm \sqrt{1.0625}}{1}=1.25 \pm 1.03<2.28 t+1
\end{aligned}
$$

The frog was $3: 4$ ft above the sound when it u oo appoximotery 0.22 te ard 2.28 te from the base of the
c) At what horizontal distance from the base of the stump did the frog reach its highest point?

$$
h(x)=-0.5 x^{2}+1.25 x+3 \text { downward parabola }
$$

$h(x)=-0.5 x$
maximum recur at the vertex $V\left(x_{v}, h_{v}\right)$

$$
x_{v}=\frac{-b}{2 a}=\frac{-1.25}{2(-0.5)}=1.25 t t
$$

Lo, the frog reached it highest point when it was 1.25 ft from the base of the sterimp.
d) What was the maximum height reached by the frog?

$$
\begin{aligned}
h_{\text {wax }}=h_{v} & =-0.5(1.25)^{2}+1.25(1.25)+3 \\
& =3.78 t
\end{aligned}
$$

The max. height reached was 3.78 ft .

Exercise \#8 Find a value of c so that $y=x^{2}-10 x+c$ has exactly one x-intercept.
(3.1-\#71)

$$
\begin{array}{ll}
x-n: \quad & y=0 \\
& x^{2}-10 x+c=0
\end{array}
$$

One $x-n$ iff $x^{2}-10 x+c=0$ has one solute ix

$$
\begin{aligned}
& \Delta=b^{2}-4 a c=0 \\
& \Delta=100-4 c=0 \\
& 100=4 c<c=25
\end{aligned}
$$

Exercise \#9 Find the largest possible value of y if $y=-(x-2)^{2}+9$. Then find the following:
a) the largest possible value of $\sqrt{-(x-2)^{2}+9}$
$y=-(x-2)^{2}+9$
parabola stems downward, then fore the max. ocala at the vertex $V(2,9) \quad$ ymax $=9$

$$
\begin{aligned}
\sqrt{-(x-2)^{2}+9} & \text { wicreoses if }-(x-2)^{2}+9 \text { iereose } \\
& \text { acteose if }-(x-2)^{2}+9 \text { decrease }
\end{aligned}
$$

$\sqrt{-(x-)^{2}+9}=$ moxinum if and rely if $-\left(x-y^{2}+9=\right.$ woxivmu
$\begin{aligned} & \text { max of } \sqrt{-(x-2)^{2}+9}=\sqrt{9}=3 \\ & \text { b) the smallest possible positive value of } \frac{1}{-(x-2)^{2}+9}\end{aligned}$
when $y=-(x-2)^{2}+9$ is moxivivem,
$\frac{1}{y}$ is wive sem
The molest value of $\frac{1}{-(x-2)^{2}+3}=\frac{1}{9}$

