REVIEW Chapter 1 Solving Equations and Inequalities

<u>Definition</u> The standard form of a quadratic or second degree equation in one variable

is $ax^2 + bx + c = 0$ where $a, b, c \in \mathbb{R}; a \neq 0$.

Solving quadratic equations

(1) THE FACTORING METHOD – used to solve equations of the form

 $ax^{2} + bx + c = 0$ that are factorable (see factoring methods on page 2)

Zero-Factor Property: The product of two factors equals zero if and only if

one of the factors (or both) is zero.

 $AB = 0 \Leftrightarrow A = 0 \text{ or } B = 0$

(2) EXTRACTION OF ROOTS – used to solve equations of the form

$$x^{2} = k \qquad \text{or} \qquad (x-p)^{2} = k .$$
$$\sqrt{x^{2}} = \sqrt{k} \qquad \sqrt{(x-p)^{2}} = \sqrt{k}$$
$$x = \pm \sqrt{k} \qquad x-p = \pm \sqrt{k}$$
$$x = p \pm \sqrt{k}$$

(3) COMPLETING THE SQUARE $ax^2 + bx + c = 0$

Step 1: Coefficient of x^2 equal to 1.

Step 2: Constant isolated.

Step 3: Complete the square by adding $\left(\frac{1}{2} \cdot coefficient \ of \ x\right)^2$ to both sides of the equation and solve by the extraction of roots method.

(4) QUADRATIC FORMULA

If $ax^2 + bx + c = 0$, then the solutions are given by:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

<u>Definition</u> The discriminant of a quadrati	С
--	---

equation is $\Delta = b^2 - 4ac$

If	$\Delta > 0$,	the equation has two distinct real solutions.
If	$\Delta = 0 ,$	the equation has one real (rational) solution.
If	$\Delta < 0$,	the equation has two complex (nonreal) solutions.

(2) If
$$a,b,c \in \mathbb{Q}$$
, then:

(1) If $a,b,c \in \mathbb{R}$, then:

If Δ is a perfect square, the equation has **rational solutions**.

If Δ is not a perfect square, then the equation has **irrational solutions.**

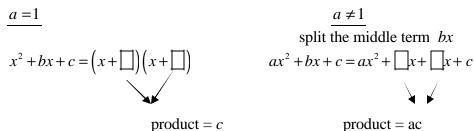
Factoring a polynomial

Properties

- 1. GCF Factor out the greatest common factor (if any).
- 2. Special products <u>Two terms</u> <u>Three terms</u> $a^{2}-b^{2} = (a-b)(a+b)$ $a^{2}+2ab+b^{2} = (a+b)^{2}$ $a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$ $a^{2}-2ab+b^{2} = (a-b)^{2}$ $a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$

sum = b

3. Factoring technique to factor out a trinomial $ax^2 + bx + c$



sum = b then factor by grouping

4. If more than four term, factor by grouping.

Exercise #1 Solve the following linear equations: a) 5(x+3) + 4x - 3 = -(2x-4) + 2b) $\frac{5}{6}x - 2x + \frac{4}{3} = \frac{5}{3}$ c) -8(3x+4) + 6x = 4(x-8) + 4x

Exercise #2 Solve by **factoring** (the zero-factor property): a) $x^2 + 2x - 8 = 0$ b) $5x^2 - 3x = 2$ c) $-6x^2 + 7x = -10$ d) $3x^2 - 75 = 0$

Exercise #3 Solve the equation in the set of complex numbers by **extracting roots** (the square root property).

a) $\frac{2x^2}{3} = 4$	c) $1-3(x-1)^2 = 28$
$b)\left(t-\frac{1}{2}\right)^2 = \frac{3}{4}$	d) $(-2x+5)^2 = -8$

Exercise #4 Solve the equations in the set of complex numbers by **completing the square**.

a)
$$x^{2} - \frac{5}{3}x = 1$$

b) $2p^{2} + p - 10 = 0$
c) $-4x^{2} + 8x = 7$

Exercise #5 Solve the equations in the set of complex numbers by the **quadratic formula**.

a) $x^2 - \frac{x}{2} + 1 = 0$	d) $2x^2 + x - 5 = 0$
b) $\frac{1}{2}a^2 - 3 = -\frac{1}{4}a$	c) $3 - \frac{4}{x} - \frac{2}{x^2} = 0$

- **Exercise #6** Solve the following equations in the set of complex numbers. a) $x^3 + 27 = 0$ b) $2x^7 - 128x = 0$ c) $x^4 - 16 = 0$
- **Exercise #7** a) Write (in standard form) a quadratic equation with rational coefficients that has $2 + \sqrt{3}$ as a solution.

b) Write (in standard form) a quadratic equation with integer coefficients that has 2 and $-\frac{1}{2}$ as solutions.

c) Write (in standard form) a quadratic equation with real coefficients that has 1+i as a solution.

Exercise #8 a) Determine k such that the numbers.

solutions of $3x^2 + 4x = k$ are nonreal complex

b) Find the value(s) of k that will make the solutions of the following equation equal: $(k-1)x^2 + (k-1)x + 1 = 0$

Exercise #9 Solve each equation for the indicated variable: a) $3x^2 + xy + y^2 = 2$, for y;

b)
$$A = 2w^2 + 4lw$$
, for w; c) $a^2 + b^2 = c^2$, for b

Exercise #10 Solve the following equations:

a)
$$2x^4 - 7x^2 + 5 = 0$$

b) $(x+5)^{\frac{4}{3}} + (x+5)^{\frac{2}{3}} - 20 = 0$
c) $7x^{-2} - 10x^{-1} - 8 = 0$

Exercise #11 Solve the following equations:

a)
$$x^{2} + \sqrt{3}x - \frac{1}{4} = 0$$

b) $3x(x+1) = 2x+2$
c) $3x^{2}\left(x+\frac{1}{2}\right)\left(2x-\frac{1}{3}\right)\left(5x-\frac{1}{2}\right) = 0$
d) $100-2(3x-1)^{2} = 0$
e) $40-12m^{2} = 0$
f) $5-(x-1)^{2} = (x-2)^{2}$

Exercise #12 Solve the following equations:

a)
$$\frac{4x+3}{4} - \frac{2x}{x+1} = x$$

b) $\frac{x}{x-3} = \frac{3}{x-3} + 3$
c) $\frac{4}{x^2 + x - 6} - \frac{1}{x^2 - 4} = \frac{2}{x^2 + 5x + 6}$
d) $\frac{2x-5}{x} = \frac{x-2}{3}$

Exercise #13 Solve the following equations: a) $\sqrt{4x+5} - 2 = 2x - 7$ b) $\sqrt{x} - \sqrt{x-12} = 2$ c) $(2x+5)^{\frac{1}{3}} - (6x-1)^{\frac{1}{3}} = 0$

Exercise #14 Solve each inequality. Write each solution set in interval notation and graph it.

a)
$$\frac{2x-5}{-8} \le 1-x$$

b) $-3 \le \frac{x-4}{-5} < 4$
c) $x^2 \le 9$
d) $x^2 + 4x > -1$
e) $x^3 + 4x^2 - 9x - 36 \ge 0$
f) $(x-5)^2(x+1) < 0$

Exercise #15 Solve each rational inequality. Write each solution set in interval notation.

a)
$$\frac{x+1}{x-4} > 0$$
 b) $\frac{x+3}{x-5} \le 1$

Answers:
#1 a) -6/11; b) -2/7; c) 0.
#3 a)
$$\pm\sqrt{6}$$
; b) $\frac{1}{2} \pm \frac{\sqrt{3}}{2}$; c) $1\pm 3i$; d) $\frac{5}{2} \pm \sqrt{2}i$.
#4 a) $\frac{5\pm\sqrt{61}}{6}$; b) $-5/2,2$; c) $\frac{2\pm\sqrt{3}i}{2}$.
#5 a) $\frac{1\pm\sqrt{15}i}{4}$; b) $\frac{-1\pm\sqrt{97}}{4}$; c) $\frac{2\pm\sqrt{10}}{3}$; d) $\frac{-1\pm\sqrt{41}}{4}$.
#6 a) -3, $\frac{3\pm3\sqrt{3}i}{2}$; b) 0, $\pm2,1\pm\sqrt{3}i,-1\pm\sqrt{3}i$.
#7 a) $x^2 - 4x + 1 = 0$; b) $2x^2 - 3x - 2 = 0$; c) $x^2 - 2x + 2 = 0$.
#8) a) $k < -\frac{4}{3}$; b) 5
#9 a) $\frac{-x\pm\sqrt{8-11x^2}}{2}$; b) $\frac{-2!\pm\sqrt{4^2+2A}}{2}$; c) $\pm\sqrt{c^2-a^2}$.
#10 a) $\pm1,\pm\frac{\sqrt{10}}{2}$; b) -13, 3, $-5\pm5\sqrt{5}i$ c) $-7/4,1/2$; d) 9.
#11 a) $\frac{-\sqrt{3}\pm2}{2}$; b) $\frac{2}{3},-1$; c) $0,-\frac{1}{2},\frac{1}{6},\frac{1}{10}$; d) $\frac{1\pm5\sqrt{2}}{3}$; e) $\pm\frac{\sqrt{30}}{3}$; f) 0,3.
#12 a) 3/5; b) (0; c) -9; d) 3,5.
#14 a) $x < \frac{1}{2}$; b) $x \in (-16,19]$; c) $[-3,3]$ d) $x < -2-\sqrt{3}$ or $x > -2+\sqrt{3}$; e) $x \in [-4,-3] \cup [3,\infty)$; f) $x < -1$.
#15 a) $x < -1$ or $x > 4$; b) $x < 5$.