## Solving Quadratic Equations by the Square Root Property

## OBJECTIVES

1 Solve equations of the form $x^{2}=k$, where $k>0$.
2 Solve equations of the form $(a x+b)^{2}=k$, where $k>0$.

3 Use formulas involving squared variables.

## EXAMPLE 1 Solving Quadratic Equations of the Form $x^{2}=k$

Solve each equation. Write radicals in simplified form.
(a) $x^{2}=16$

By the square root property, since $x^{2}=16$,

$$
x=\sqrt{16}=4 \quad \text { or } \quad x=-\sqrt{16}=-4
$$

An abbreviation for " $x=4$ or $x=-4$ " is written $x= \pm 4$ (read "positive or negative 4"). Check each solution by substituting it for $x$ in the original equation. The solution set is $\{-4,4\}$.
(b) $z^{2}=5$

The solutions are $z=\sqrt{5}$ or $z=-\sqrt{5}$. The solution set may be written $\{ \pm \sqrt{5}\}$.
(c)

$$
\begin{array}{rlrlrl}
5 m^{2}-40 & =0 & & \\
5 m^{2} & =40 & & \text { Add } 40 . \\
m^{2} & =8 & & \text { Divide by } 5 . \\
m=\sqrt{8} & \text { or } & m=-\sqrt{8} & & \text { Square root property } \\
m=2 \sqrt{2} & \text { or } & m=-2 \sqrt{2} & & \text { Simplify } \sqrt{8} .
\end{array}
$$

The solution set is $\{ \pm 2 \sqrt{2}\}$.
(d) $p^{2}=-4$

Since -4 is a negative number and since the square of a real number cannot be negative, there is no real number solution for this equation. (The square root property cannot be used because of the requirement that $k$ must be positive.) The solution set is $\emptyset$.
(e) $3 x^{2}+5=11$

First solve the equation for $x^{2}$.

$$
\begin{aligned}
3 x^{2}+5 & =11 & & \\
3 x^{2} & =6 & & \text { Subtract } 5 \\
x^{2} & =2 & & \text { Divide by } 3 .
\end{aligned}
$$

Now use the square root property to get the solution set $\{ \pm \sqrt{2}\}$.
Now Try Exercises 5, 7, 11, and 19.

OBJECTIVE 2 Solve equations of the form $(a x+b)^{2}=k$, where $\boldsymbol{k}>\boldsymbol{0}$. In each equation in Example 1, the exponent 2 appeared with a single variable as its base. We can extend the square root property to solve equations where the base is a binomial, as shown in the next example.

## EXAMPLE 2 Solving Quadratic Equations of the Form $(x+b)^{2}=k$

Solve each equation.
(a) $(x-3)^{2}=16$

Apply the square root property, using $x-3$ as the base.

$$
\begin{array}{rlrlr}
r-3)^{2}=16 & & \\
x-3=\sqrt{16} & \text { or } & x-3 & =-\sqrt{16} & \\
x-3=4 & \text { or } & x-3 & =-4 & \sqrt{16}=4 \\
x=7 & \text { or } & & x=-1 & \\
x-1 & \text { Add } 3 .
\end{array}
$$

Check both answers in the original equation.

$$
\begin{array}{rlrlr}
(x-3)^{2} & =16 & & \\
(7-3)^{2} & =16 & ? & \text { Let } x=7 . \\
4^{2} & =16 & ? & \\
16 & =16 & & \text { True }
\end{array}
$$

$$
\begin{aligned}
(x-3)^{2} & =16 \\
(-1-3)^{2} & =16 \quad ? \quad \text { Let } x=-1 \\
(-4)^{2} & =16 \quad ? \\
16 & =16 \quad \text { True }
\end{aligned}
$$

The solution set is $\{7,-1\}$.
(b) $(x-1)^{2}=6$

By the square root property,

$$
\begin{aligned}
x-1 & =\sqrt{6} & \text { or } & & x-1 & =-\sqrt{6} \\
x & =1+\sqrt{6} & \text { or } & & x & =1-\sqrt{6} .
\end{aligned}
$$

Check:

$$
\begin{aligned}
& (1+\sqrt{6}-1)^{2}=(\sqrt{6})^{2}=6 \\
& (1-\sqrt{6}-1)^{2}=(-\sqrt{6})^{2}=6
\end{aligned}
$$

The solution set is $\{1+\sqrt{6}, 1-\sqrt{6}\}$.
Now Try Exercises 23 and 27.

NOTE The solutions in Example 2(b) may be written in abbreviated form as

$$
1 \pm \sqrt{6} .
$$

If they are written this way, keep in mind that two solutions are indicated, one with the + sign and the other with the - sign.


## EXAMPLE 3 Solving a Quadratic Equation of the Form $(a x+b)^{2}=k$

Solve $(3 r-2)^{2}=27$.

$$
\begin{array}{rlrlrl}
3 r-2 & =\sqrt{27} & \text { or } & 3 r-2 & =-\sqrt{27} & \\
3 r-2 & =3 \sqrt{3} & & \text { or } & 3 r-2 & =-3 \sqrt{3} \\
3 r & =2+3 \sqrt{3} & & \text { or } & & \sqrt{27}=\sqrt{9 \cdot 3}=3 \sqrt{3} \\
r & =\frac{2+3 \sqrt{3}}{3} & & \text { or root property } \\
r & & r & =\frac{2-3 \sqrt{3}}{3} & & \text { Add } 2 . \\
& & & \text { Divide by } 3 .
\end{array}
$$

The solution set is $\left\{\frac{2 \pm 3 \sqrt{3}}{3}\right\}$.
Now Try Exercise 35.

CAUTION The solutions in Example 3 are fractions that cannot be simplified, since 3 is not a common factor in the numerator.

## EXAMPLE 4 Recognizing a Quadratic Equation with No Real Solutions

Solve $(x+3)^{2}=-9$.
Because the square root of -9 is not a real number, the solution set is $\emptyset$.
Now Try Exercise 25.

OBJECTIVE 3 Use formulas involving squared variables.

## EXAMPLE 5 Finding the Length of a Bass

The formula

$$
w=\frac{L^{2} g}{1200}
$$

is used to approximate the weight of a bass, in pounds, given its length $L$ and its girth $g$, where both are measured in inches. Approximate the length of a bass weighing 2.20 lb and having girth 10 in. (Source: Sacramento Bee, November 29, 2000.)

$$
\begin{aligned}
w & =\frac{L^{2} g}{1200} & & \text { Given formula } \\
2.20 & =\frac{L^{2} \cdot 10}{1200} & & w=2.20, g=10 \\
2640 & =10 L^{2} & & \text { Multiply by } 1200 . \\
L^{2} & =264 & & \text { Divide by } 10 . \\
L & \approx 16.25 & & \text { Use a calculator; } L>0 .
\end{aligned}
$$

The length of the bass is a little more than 16 in . (We discard the negative solution -16.25 since $L$ represents length.)

Now Try Exercise 53.

An Addison-Wesley product. Copyright © 2004 Pearson Education, Inc.

