REVIEW TEST 2
 Chapters $\mathbf{8} \& 9$

1) Solve (in the set of complex numbers \mathbb{C}) using the Square root property:
a) $9 x^{2}=25$;
b) $\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}$;
c) $3(t-2)^{2}+38=0$
d) $1-3(y-1)^{2}=10$
2) Solve the following (in the set of complex numbers \mathbb{C}) by the quadratic formula:
a) $2 x^{2}+1=4 x$;
b) $t^{2}-\frac{t}{2}+1=0$;
c) $\frac{1}{2} x^{2}+5=\frac{3}{2} x$;
3) Solve the following (in the set of complex numbers \mathbb{C}) by completing the square:
a) $x^{2}-6 x-7=0$;
b) $2 a^{2}-6 a-5=0$;
c) $-4 x^{2}-36 x-65=0$;
d) $3 x^{2}=5 x+21$
4) Answer all questions; show all work. Let $y=\frac{1}{3}(x+3)^{2}-2$ be a parabola.
a) What type of curve is this?; b) y-intercept?; c) Vertex ; d) x- intercept(s)? ; e) sketch its graph; f) What is the standard form of the equation? g) Domain? h) Range? i) Is this function one-to-one? Does it have an inverse?
5) Answer all questions for each parabola.
i) $y=-2 x^{2}+x+3$
ii) $y=2 x^{2}-5 x-6$
iii) $y=\frac{1}{7} x^{2}-8 x+66$
a) What type of curve is this?; b) y-intercept?; c) Vertex ; d) x - intercept(s)? ; e) sketch its graph; f)What is the vertex form of the above equation? g) Domain? h) Range? i) Is this function one-to-one? Does it have an inverse?
6) A model rocket launched with an upward velocity of 3.75 meters per second. The height of the rocket after t seconds if given by the formula: $h=-4.9 t^{2}+3.75 t+12.25$.
a) How high is the rocket off the ground to start with?
b) How long does it take the rocket to hit the ground?
c) When does the rocket reach a height of 10 meters?
d) What is the maximum height the rocket reaches and how long it takes to reach that height?
7) A baseball thrown vertically reaches a height h in feet given by $h=56 t-16 t^{2}$, where t is measured in seconds. What is the maximum height and how long it takes to get there? During what intervals is the height of the ball greater than 40 feet?
8) A baseball is thrown straight up from a rooftop. The function $s(t)=-16 t^{2}+48 t+448$ describes the ball's height above the ground, $\mathrm{s}(\mathrm{t})$, in feet, t seconds after it is thrown.
a) What was the initial height of the ball?
b) Where is the ball after 1 second?
c) How long will it take for the ball to hit the ground?
9) One leg of a right triangle is 12 inches. The hypotenuse is 3 inches less than twice the other leg. Find the lengths of the three sides of the triangle.

More Word problems: Section 5.7 - Problems 65, 66, 71, 83

1. Graph the following functions. Label the asymptote and 3 points on each graph. Give domain and range.
a. $f(x)=2^{x}$
b. $\quad h(x)=e^{x}$
c. $g(x)=\log _{3} x$
d. $y=\ln x$
e. $y=(0.3)^{x}$
f. $y=\log _{\frac{1}{2}} x$
2. Let $f(x)=2 x+5$ and $g(x)=\frac{3-x}{x+4}$. Answer the following questions:
a) Find $(g \circ f)(x)$
b) $(f \circ g)(-3)$
c) Find $f^{-1}(x)$
d) $g^{-1}(x)$
3. Find the inverse of each function:
a) $f(x)=\frac{1}{2} \sqrt{3 x-7}+4$
c) $g(x)=5-2 \sqrt[3]{4+x}$
c) $h(x)=\frac{2}{3} x+6$
d) $l(x)=\frac{x+1}{2-x}$
Exercise 6 Handout Chapter 9
4. Write each equation in its equivalent exponential form:
a) $3=\log _{4} x$
b) $\log _{5} 125=y$
c) $\ln (x+1)=2$
Exercise 3 Handout Chapter 9
5. Write each equation in its equivalent logarithmic form:
a) $2^{-4}=\frac{1}{16}$
b) $15^{x}=2$
c) $e^{5}=x$
Exercise 2 Handout Chapter 9
6. Write as a single logarithm with coefficient 1 :
a) $\log (x+1)-\log (x+2)$
b) $2 \ln 3+\ln x-\frac{1}{2} \ln y$
Exercises 5, 10 Handout Chapter 9
7. Expand as much as possible.
a) $\log _{5}\left(\frac{125 x^{3}}{y^{2} \sqrt{t}}\right)$
b) $\ln \left(\sqrt[3]{\frac{x^{2} y}{4 z^{5}}}\right)$
Exercise 4 Handout Chapter 9
8. Solve each equation. Give exact answer as well as an approximation. Write conditions whenever appropriate.
a) $2^{4 x-5}=16^{1+x}$
d) $\log _{5} x+\log _{5}(4 x-1)=1$
Exercises 8,9 Handout Chapter 9
b) $25 e^{4 x}+12=50$
e) $\log (x+4)-\log 2=\log (5 x+1)$
c) $3 \ln (x+2)-4=3$
f) $\ln (x+1)-\ln x=1$
g) $5^{x-3}+1=12$

All word problems from Handout Chapter 9, exercises 11-24 and from Homework Chapter 9.

