REVIEW TEST 2 Chapters 8 & 9

1) Solve (in the set of complex numbers $\mathbb C$) using the Square root property:

a)
$$9x^2 = 25$$
; **b**) $\left(x - \frac{1}{2}\right)^2 = \frac{3}{4}$; **c**) $3(t-2)^2 + 38 = 0$ d) $1 - 3(y-1)^2 = 10$

2) Solve the following (in the set of complex numbers \mathbb{C}) by the quadratic formula:

a) $2x^2 + 1 = 4x$; b) $t^2 - \frac{t}{2} + 1 = 0$; c) $\frac{1}{2}x^2 + 5 = \frac{3}{2}x$;

3) Solve the following (in the set of complex numbers $\mathbb C$) by completing the square:

a)
$$x^2 - 6x - 7 = 0$$
; b) $2a^2 - 6a - 5 = 0$; c) $-4x^2 - 36x - 65 = 0$; d) $3x^2 = 5x + 21$

4) Answer all questions; show all work. Let $y = \frac{1}{3}(x+3)^2 - 2$ be a parabola.

a) What type of curve is this?; b) y-intercept?; c) Vertex ; d) x- intercept(s)? ; e) sketch its graph; f) What is the standard form of the equation? g) Domain? h) Range? i) Is this function one-to-one? Does it have an inverse?

5) Answer all questions for each parabola.

i)
$$y = -2x^2 + x + 3$$
 ii) $y = 2x^2 - 5x - 6$ iii) $y = \frac{1}{7}x^2 - 8x + 66$

a) What type of curve is this?; b) y-intercept?; c) Vertex ; d) x- intercept(s)? ; e) sketch its graph; f)What is the vertex form of the above equation? g) Domain? h) Range? i) Is this function one-to-one? Does it have an inverse?

6) A model rocket launched with an upward velocity of 3.75 meters per second. The height of the rocket after t seconds if given by the formula: $h = -4.9t^2 + 3.75t + 12.25$.

- a) How high is the rocket off the ground to start with?
- b) How long does it take the rocket to hit the ground?
- c) When does the rocket reach a height of 10 meters?

d) What is the maximum height the rocket reaches and how long it takes to reach that height?

7) A baseball thrown vertically reaches a height *h* in feet given by $h = 56t - 16t^2$, where *t* is measured in seconds. What is the maximum height and how long it takes to get there? During what intervals is the height of the ball greater than 40 feet?

8) A baseball is thrown straight up from a rooftop. The function $s(t) = -16t^2 + 48t + 448$ describes the ball's height above the ground, s(t), in feet, t seconds after it is thrown.

- a) What was the initial height of the ball?
- b) Where is the ball after 1 second?
- c) How long will it take for the ball to hit the ground?

9) One leg of a right triangle is 12 inches. The hypotenuse is 3 inches less than twice the other leg. Find the lengths of the three sides of the triangle.

1. Graph the following functions. Label the asymptote and 3 points on each graph. Give domain and range.

a.
$$f(x) = 2^{x}$$

b. $h(x) = e^{x}$
c. $g(x) = \log_{3} x$
d. $y = \ln x$
e. $y = (0.3)^{x}$
f. $y = \log_{\frac{1}{2}} x$

2. Let
$$f(x) = 2x + 5$$
 and $g(x) = \frac{3-x}{x+4}$. Answer the following questions:
a) Find $(g \circ f)(x)$ b) $(f \circ g)(-3)$ c) Find $f^{-1}(x)$ d) $g^{-1}(x)$

3. Find the inverse of each function:

a)
$$f(x) = \frac{1}{2}\sqrt{3x-7} + 4$$
 c) $g(x) = 5 - 2\sqrt[3]{4+x}$ c) $h(x) = \frac{2}{3}x + 6$
d) $l(x) = \frac{x+1}{2-x}$ Exercise 6 Handout Chapter 9

- 4. Write each equation in its equivalent exponential form: a) $3 = \log_4 x$ b) $\log_5 125 = y$ c) $\ln(x+1) = 2$ Exercise 3 Handout Chapter 9
- 5. Write each equation in its equivalent logarithmic form:

a)
$$2^{-4} = \frac{1}{16}$$
 b) $15^{x} = 2$ c) $e^{5} = x$ Exercise 2 Handout Chapter 9

6. Write as a single logarithm with coefficient 1:

a)
$$\log(x+1) - \log(x+2)$$
 b) $2\ln 3 + \ln x - \frac{1}{2}\ln y$ Exercises 5, 10 Handout Chapter 9

7. Expand as much as possible.

a)
$$\log_5\left(\frac{125x^3}{y^2\sqrt{t}}\right)$$
 b) $\ln\left(\sqrt[3]{\frac{x^2y}{4z^5}}\right)$ Exercise 4 Handout Chapter 9

8. Solve each equation. Give **exact answer** as well as an **approximation**. Write conditions whenever appropriate.

a)
$$2^{4x-5} = 16^{1+x}$$

b) $25e^{4x} + 12 = 50$
c) $3\ln(x+2) - 4 = 3$
d) $\log_5 x + \log_5 (4x-1) = 1$
e) $\log(x+4) - \log 2 = \log(5x+1)$
f) $\ln(x+1) - \ln x = 1$
g) $5^{x-3} + 1 = 12$

All word problems from Handout Chapter 9, exercises 11 – 24 and from Homework Chapter 9.