TEST \#2 @ 165 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

PART I- Solve all problems:

1. Simplify the following g expression. Write the final answer using only positive exponents (if necessary).

$$
\left(\frac{m n^{-2} p^{3}}{m^{-1} n p^{-4}}\right)^{-2}\left(\frac{m^{3} n p^{-2}}{m^{-2} n^{2} p^{3}}\right)^{-1}
$$

2. Let $P(x)=2 x^{5}+3 x^{4}-\frac{1}{2} x^{3}-10 x-2$ be a polynomial in x. Answer the following questions:
a) How many terms does it have?
b) What is the degree of the polynomial?
c) What is the constant term?
d) Find $P(0), P(-1)$, and $P\left(a^{2}\right)$ and simplify.
3. Use long division to find:

$$
\frac{2 x^{3}-5 x^{2}-6 x+15}{x-3}
$$

4. Factor each expression as completely as possible. If prime, state so.
a) $26 a^{4} b-34 a^{3} c^{2}+28 a^{2} b^{3}$
b) $49-m^{2}$
c) $a^{2}-4 a-a b+4 b$
d) $64 x^{3}-27$
e) $25 x^{2}+100$
f) $2 x+x^{2}-15$
g) $3 x^{2}-11 x-20$
h) $1-16 m^{4}$
i) $9 y^{2}+12 y-15$
j) $3 t^{2}-15 t+16$
k) $c^{2}+16$
1) $3 a^{2}+24 a+48$
m) $8+n^{3}$
n) $6 a^{2}+40 a+24$
5. Do the following operations:
a) $3^{-2}+\left(\frac{1}{2}\right)^{-1}+(-2)^{-1}+5^{0}$
b) $\left(x^{3}+4\right)^{2}$
c) $(3 a-2 c)^{2}$
d) $\frac{x+5}{x+10} \div\left(\frac{x^{2}+10 x+25}{x^{2}+10 x} \cdot \frac{10 x}{x^{2}+15 x+50}\right)$
e) $\frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}-\frac{1}{y}}$
f) $\frac{8}{a^{2}+6 a}-\frac{3}{a^{2}+4 a-12}$
g) $\frac{4 y}{y^{2}-1}-\frac{5}{y^{2}+2 y+1}$
h) $\frac{m}{m^{2}-1}+\frac{m-1}{m^{2}+2 m+1}$
6. Solve the following equations by factoring.
a) $x(2 x-3)=-1$
b) $3 m^{2}+6 m=0$
c) $(a-2)(a-4)=15$
d) $t^{3}+35 t=12 t^{2}$
7. Solve each equation. Write conditions whenever necessary.
a) $5 x\left(x-\frac{3}{2}\right)\left(5 x-\frac{2}{3}\right)\left(3-\frac{x}{4}\right)=0$
b) $\frac{3 x-1}{x-2}=\frac{5}{x-2}+1$
c) $\frac{x+4}{x^{2}-3 x+2}-\frac{5}{x^{2}-4 x+3}=\frac{x-4}{x^{2}-5 x+6}$
d) $\frac{1}{x-1}+\frac{1}{2}=\frac{2}{x^{2}-1}$
e) $I=\frac{E}{R+r}$ solve for r .
f) $m=\frac{R y}{t}$ solve for t .
8. A stone is thrown upward from the top of a building. The height of the stone above the ground t seconds later is given by the formula

$$
h=-16^{2}+32 t+240
$$

where h is in feet.
a) Find the initial height of the stone.
b) Find the height of the stone after 1 second.
c) When will the stone be 256 feet above the ground?
d) How long will it take to hit the ground?

PART II of the test on next page.

PART II - Choose TWO problems. You can solve one more for extra credit.

1. Hooke's law for an elastic spring states that the distance a spring stretches varies directly with the force applied. If a force of 75 lb stretches a certain spring 15 inches, how much will a force of 150 lb stretch the spring?
2. A ladder is leaning against a building. The distance from the bottom of the ladder to the building is 4 ft less than the length of the ladder. How high up the side of the building is the top of the ladder if that distance is 2 ft less than the length of the ladder?
3. A boat goes 7 mph in still water. It takes as long to go 20 mi upstream as 50 mi downstream. Find the speed of the current.
4. Ella can paint a room, working alone, in 5 hours. Frank can do the job in 4 hours. How long will it take them to paint the room if they work together?

TEA 2- LOM DIONS

$$
\text { (1) }\left(\frac{m n^{-2} p^{3}}{m^{-1} n p^{-4}}\right)^{-2}\left(\frac{m^{3} n p^{-2}}{m^{-2} n^{2} p^{3}}\right)^{-1} \quad \quad \text { There/pox, } \quad \frac{\frac{2 x^{3}-5 x^{2}-6 x+15}{x-3}=2 x^{2}+x-3+\frac{6}{x-3}}{}
$$

$$
\left(m^{1+1} n^{-2-1} p^{3+4}\right)^{-2}\left(m^{3+2} n^{1-2} \rho^{-2-3}\right)^{-1}=
$$

$$
\left(m^{2} n^{-3} p^{7}\right)^{-2}\left(m^{5} n^{-1} p^{-5}\right)^{-1}=
$$

(h)

$$
m^{-4} n^{6} p^{-14} m^{-5} n p^{5}=
$$

a) $26 a^{4} b-34 a^{3} c^{2}+28 a^{2} b^{3}=$

$$
\begin{aligned}
& m^{-4-5} n^{6+1} p^{-14+5}= \\
& m^{-9} n^{7} p^{-9}=\left(\frac{n^{7}}{m^{9} p^{9}}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
49-m^{2} & =7^{2}-m^{2} \\
& =(7-m)(7+m)
\end{aligned}
$$

c)
(2) $P(x)=2 x^{5}+3 x^{4}-\frac{1}{2} x^{3}-10 x-2$
a) 5 terms
b) degree 5
c) -2
d) $P(Q)=-2$

$$
\begin{aligned}
& P(-1)=2(-1)+3(1)-\frac{1}{2}(-1)-10(-1)-2 \\
& P(-1)=-2+3+\frac{1}{2}+10-2 \\
&=9+\frac{1}{2}=\frac{19}{2}
\end{aligned}
$$

$P\left(a^{2}\right)=2\left(a^{2}\right)^{5}+3\left(a^{2}\right)^{4}-\frac{1}{2}\left(a^{2}\right)^{3}-10\left(a^{2}\right)-2$

$$
\left|P a^{4}\right|=2 a^{10}+3 a^{8}-\frac{1}{2} a^{6}-10 a^{2}-2
$$

d)

$$
\begin{aligned}
& 64 x^{3}-27=(4 x)^{3}-3^{3} \\
= & (4 x-3)\left((4 x)^{2}+4 x(3)+3^{2}\right) \\
= & (4 x-3)\left(16 x^{2}+12 x+9\right)
\end{aligned}
$$

e)

$$
\begin{aligned}
& 25 x^{2}+100= \\
& 25\left(x^{2}+4\right)
\end{aligned}
$$

$$
P(-1)=\frac{19}{2}
$$

(3)

$$
\begin{array}{r}
\frac{2 x^{2}+x-3}{2 x^{3}-5 x^{2}-6 x+15} \\
\frac{-2 x^{3}+6 x^{2}}{1+6 x+15} \\
\frac{x^{2}-6 x+3 x}{1-3 x+15} \\
\frac{+3 x-9}{6}
\end{array}
$$

$$
\begin{aligned}
& \text { g) } \begin{array}{l}
3 x^{2}-11 x-20= \\
3 x^{2}+4 x-15 x-20= \\
x(3 x+4)-5(3 x+4)= \\
(3 x+4)(x-5)
\end{array}= \\
& =
\end{aligned}
$$

h)

$$
\begin{aligned}
& 1-16 m^{4}=1^{2}-\left(4 m^{2}\right)^{2} \\
&=\left(1-4 m^{2}\right)\left(1+4 m^{2}\right) \\
&=\left(1^{2}-(2 m)^{2}\right)\left(1+4 m^{2}\right) \\
&=\left|(1-2 m)(1+2 m)\left(1+4 m^{2}\right)\right|
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \text { a) } 3^{-2}+\left(\frac{1}{2}\right)^{-1}+(-2)^{-1}+5^{0}= \\
& \frac{1}{3^{2}}+\frac{1}{\left(\frac{1}{2}\right)^{1}}+\frac{1}{(-2)^{1}}+1= \\
& =\frac{1}{9}+\frac{18 / 2}{1}-\frac{91}{2}+\frac{181}{1}=
\end{aligned}
$$

1) $9 y^{2}+12 y-15=$

$$
3\left(3 y^{2}+4 y-5\right)
$$

$$
\begin{aligned}
& p=-15 k^{+}- \\
& s=4 \\
& \hline 15=5.3 \\
& =15.1
\end{aligned}
$$

j) $\left|\begin{array}{c}3 t^{2}-15 t+16 \\ \text { prime }\end{array}\right|$

$$
\begin{aligned}
p & =48< \\
s & =15 \\
48 & =4.24 \\
& =4.12 \\
& =16.6 \\
& =48.3
\end{aligned}
$$

k) $\mid c^{2}+16$-jime \mid
e) $3 a^{2}+44 a+48=$

$$
\begin{aligned}
& 3\left(a^{2}+8 a+16\right)= \\
& 3(a+4)^{2}
\end{aligned}
$$

m) $8+n^{3}=2^{3}+n^{3}$

$$
\begin{aligned}
& =(2+n)\left(2^{2}-2 n+n^{2}\right) \\
& =(2+n)\left(4-2 n+n^{2}\right)
\end{aligned}
$$

1) $6 a^{2}+40 a+24=$

$$
\begin{array}{ll}
2\left(3 a^{2}+20 a+12\right)= & p=36+18 \\
2\left(3 a^{2}+18 a+2 a+12\right)= & 5=20 \\
2(3 a(a+6)+2(a+6))= & 3=18 \cdot 2 \\
2(a+c)(3 a+2)
\end{array}
$$

$$
\begin{aligned}
& \text { 7) } \frac{8}{a^{2}+6 a}-\frac{3}{a^{2}+4 a-12}= \\
& \begin{array}{l}
\frac{a-2}{\frac{8}{a(a+6)}}-\frac{\frac{a}{3}}{(a+6)(a-2)}= \\
2(0-a(a+6)(a-2)
\end{array} \\
& \frac{8(a-2)-3 a}{a(a+6)(a-2)}= \\
& \frac{8 a-16-3 a}{a(a+6)(a-2)}=\frac{5 a-16}{a(a+6)(a-2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { g) } \frac{4 y}{y^{2}-1}-\frac{5}{y^{2}+2 y+1}= \\
& \frac{y^{+1} 4 y}{(y-1)(y+1)}-\frac{y-15}{(y+1)^{2}}= \\
& \angle C O=(y+1)^{2}(y-1)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4 y(y+1)-5(y-1)}{(y-1)(y+1)^{2}}= \\
& \frac{4 y^{2}+4 y-5 y+5}{(y-1)(y+1)^{2}}=\frac{4 y^{2}-y+5}{(y-1)(y+1)^{2}}
\end{aligned}
$$

h) $\frac{m}{m^{2}-1}+\frac{m-1}{m^{2}+2 m+1}=$

$$
\begin{aligned}
& \frac{\frac{m+1}{m}}{(m+1)(m-1)}+\frac{\frac{m-1}{m-1}}{(m+1)^{2}}= \\
& \frac{m(m+1)+(m-1)^{2}}{(m-1)(m+1)^{2}}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m^{2}+m+m^{2}-2 m+1}{(m-1)(m+1)^{2}}= \\
& \frac{2 m^{2}-m+1}{(m-1)(m+1)^{2}}
\end{aligned}
$$

(6) a)

$$
\begin{aligned}
& x(2 x-3)=-1 \\
& 2 x^{2}-3 x+1=0 \\
& \frac{y}{s}=-3<-1 \\
& \frac{2}{2}=1 \cdot 2
\end{aligned}
$$

$2 x^{2}-x-2 x+1=0$
$x(2 x-1)-(2 x-1)=0$
$(2 x-1)(x-1)=0$
$2 x-1=0$ ore $x-1=0$

$$
x=\frac{1}{2}
$$

$$
x=1
$$

$$
x \in\left\{\frac{1}{2}, 1\right\}
$$

b)

$$
\begin{aligned}
& 3 m^{2}+6 m=0 \\
& 3 m(m+2)=0 \\
& m=0 \quad \text { OR } \quad m+2=0 \\
& m \in\{0,-2\}
\end{aligned}
$$

c)

$$
(a-2)(a-4)=15
$$

$$
\begin{aligned}
& a^{2}-6 a+8-15=0 \\
& a^{2}-6 a-7=0 \\
& (a-7)(a+1)=0 \\
& a-7=0 \quad \text { OR } a+1=0 \\
& a=7 \quad a=-1
\end{aligned}
$$

$a \in\{7,13$
d)

$$
\begin{aligned}
& t^{3}+35 t=12 t^{2} \\
& t^{3}-12 t^{2}+35 t=0 \\
& t\left(t^{2}-12 t+35\right)=0 \\
& t(t-7)(t-5)=0
\end{aligned}
$$

$$
2 x=4
$$

$$
\begin{aligned}
& 2 x=4 \\
& x=2 \text { not possible } \\
& \text { henfore no solutir }
\end{aligned}
$$

$t=0$ or $t-7=0$ or $t-5=0$

$$
\begin{gathered}
t=7 \\
t \in\{0,7,5\}
\end{gathered}
$$

$$
t=5
$$

(7.) a) $5 x\left(x-\frac{3}{2}\right)\left(5 x-\frac{2}{3}\right)\left(3-\frac{x}{4}\right)=0$

$$
x=0
$$

$$
x \in \varnothing
$$

$$
D R
$$

$$
\text { conditins }\left\{\begin{array}{l}
x \neq 1 \\
x \neq 2 \\
x \neq 3
\end{array}\right.
$$

$x-\frac{3}{2}=0 \Rightarrow x=\frac{3}{2} \quad$ OR
Thenfore, no solutins

$$
\begin{aligned}
& \text { c) } \frac{x+4}{x^{2}-3 x+2}-\frac{5}{x^{2}-4 x+3}=\frac{x-4}{x^{2}-5 x+6} \\
& \frac{x-3 x}{(x-4)(x-2)}-\frac{\frac{x-2}{5}}{(x-1)(x-3)}=\frac{\frac{x-1}{x}-4}{(x-2)(x-3)}
\end{aligned}
$$

$$
5 x-\frac{2}{3}=0 \Rightarrow 5 x=\frac{2}{3} \Rightarrow x=\frac{2}{15} x
$$

$$
3-\frac{x}{x}=0 \Rightarrow 3=\frac{x}{x} \Rightarrow x=12
$$

$$
x \in\left\{0, \frac{3}{2}, \frac{2}{15}, 12\right\}
$$

$$
\begin{gathered}
\angle(0=(x-1)(x-2)(x-3) \\
(x-3)(x+4)-5(x-2)=(x-1)(x-4) \\
x^{2}+x-12-5 x+10=x^{2}-5 x+4 \\
-4 x-2=-5 x+4 \\
-4 x+5 x=4+2 \\
x=6 \quad x \in 96
\end{gathered}
$$

b) $\frac{3 x-1}{x-2}=\frac{5}{x-2}+1$
condition: $\quad x \neq 2$

$$
\begin{aligned}
& \frac{3 x-1}{x-2}-\frac{5}{x-2}=1 \\
& \frac{3 x-1-5}{x-2}=1 \\
& \frac{3 x-6}{x-2}=1 \Rightarrow \\
& 3 x-6=x-2 \\
& 3 x-x=-2+6
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \frac{1}{x-1}+\frac{1}{2}=\frac{2}{x^{2}-1} \\
& \frac{2(x+1)}{\frac{1}{x-1}}+\frac{x^{2}-1}{\frac{1}{2}}=\frac{2}{(x-1)(x+1)}
\end{aligned}
$$

$$
\text { Condition: }\left\{\begin{array}{l}
x \neq 1 \\
x \neq-1
\end{array}\right.
$$

$$
\begin{aligned}
& \quad c(0=2(x-1)(x+1) \\
& 2(x+1)+x^{2}-1=4 \\
& 2 x+2+x^{2}-1-4=0 \\
& x^{2}+2 x-3=0 \\
& (x-1)(x+3)=0
\end{aligned}
$$

$$
\begin{array}{cccc}
x-1=0 & \text { OR } & x+3=0^{-5} & t-1=0 \\
x=1 & x=-3 & t=1 \sin \text { sind }
\end{array}
$$

sot possite

The stone mill te 256 ft above the grower after lscond

$$
\begin{aligned}
& \text { e) } i=\frac{E}{R+r}, r=? \\
& i(R+r)=E \\
& R+r=\frac{E}{i} \\
& r=\frac{E}{i}-R \text { or } r=\frac{E-R i}{i}
\end{aligned}
$$

d)
f)

$$
\begin{aligned}
& m=\frac{R y}{t}, \quad t=? \\
& m t=R y \\
& t=\frac{R y}{m}
\end{aligned}
$$

(8) $h=-16 t^{2}+32 t+240$
a) $t=0, h=240 \quad(t$
b)

$$
\begin{aligned}
t=1, \quad & h=-16+32+240 \\
h & =256 \mu t
\end{aligned}
$$

c)

$$
\begin{aligned}
& t=? \quad 7=256 \\
& 256=-16 t^{2}+32 t+240 \\
& 16 t^{2}-32 t-240+256=0 \\
& 16 t^{2}-32 t+16=0 \\
& 16\left(t^{2}-2 t+1\right)=0 \\
& 16(t-1)^{2}=0
\end{aligned}
$$

PART II
(1) let $d=$ aristonce $(i n)$
$F=$ force (16)
then $d=t F, k=$ costhut of variatin
if $F=75 / \mathrm{s}$, then $d=15 \mathrm{~m}$.

$$
\begin{aligned}
& \Rightarrow \\
& 15 \mathrm{in}=k \cdot 75 / \mathrm{s} \\
& k=\frac{15}{75} \mathrm{~m} / 1 \mathrm{~b} \\
& k=\frac{1}{5} \mathrm{~m} / 16
\end{aligned}
$$

Therefore, $\left\lvert\, d=\frac{1}{5} \bar{F}\right.$
if $F=15015$, find d

$$
\begin{aligned}
& d=\frac{1}{5} \cdot 150=30 \\
& d=30 \mathrm{~m}
\end{aligned}
$$

(2)
let $l=$ lensta 1 lader

Pythogoteon theoten:

$$
\begin{aligned}
& (l-2)^{2}+(l-4)^{2}=l^{2} \\
& l^{2}-4 l+4+l^{2}-8 l+16=l^{2} \\
& l^{2}-12 l+20=0 \\
& (l-2)(l-10)=0
\end{aligned}
$$

$$
l-2=0 \text { on } l-10=0
$$

$l=2 \quad l=10$ $l=2$ mot posentee $(l-2=0, l-4<0)$

Lo, $l=10$
Thenfore, the top of the lodder is $l-2=8 \mathrm{ft}$ high up the side of the bruitding
(3) Let $x=$ speed of curxut

	disbnca	rate	time
upstrame	20 mi	$7-x$	wo 0
downstea	50 mi	$7+x$	SO^{0}

$$
\begin{aligned}
& \text { time }=\frac{\text { diotonce }}{\text { rate }} \\
& \frac{2 \phi}{7-x}=\frac{5 d}{7+x} \\
& \frac{2}{7-x}=\frac{5}{7+x} \\
& 2(7+x)=5(7-x) \\
& 14+2 x=35-5 x \\
& 2 x+5 x=35-14 \\
& 7 x=2)
\end{aligned}
$$

the oper Houment
(4) let $x=$ time to panit it tose then

$$
\begin{gathered}
\frac{5 x}{\frac{1}{5}}+\frac{5 x}{4}=\frac{20}{\frac{1}{x}} \\
210=20 x \\
4 x+5 x=20 \\
9 x=20
\end{gathered}
$$

$$
x=\frac{20}{9}
$$

$$
x=2 \frac{2}{9} \text { hous }
$$

to piniote together

