TEST \#1 @ 165 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. For an exercise to be complete there needs to be a detailed solution to the problem. No proof, no credit given! Clearly label each exercise.

PART ONE - SOLVE ALL

1. Simplify the following expression:

$$
x\left[-x^{2}+x(2 x-(5-x))\right]
$$

2. Solve the following equations:
a) $2(8 y+1)-3(2-5 y)+2(1-14 y)=0$
b) $\frac{2}{5} x+\frac{1}{10} x-18=\frac{1}{20} x$
c) $11 x-5(x+2)=6 x+5$
d) $\frac{5 a+1}{6}=\frac{2-a}{3}$
e) $3(6-4 b)=2(-6 b+9)$
f) $\frac{1}{6} m=\frac{3}{4} m$
g) $y=m x+b$ solve for m.
h) $C=\frac{5}{9}(F-32)$ solve for F .
3. For each inequality do the following:
i) Solve the inequality;
ii) Graph the solution set on the number line;
iii) Write the solution set using interval notation.
a) $-3(2 x-1) \leq 4$
b) $-12 \leq \frac{1}{2} t+1<4$
4. Graph the following inequality in a rectangular coordinate system. Label the boundary line and all the points used. Clearly show how you obtain the graph. Show all work.

$$
x-5 y<10
$$

5. Answer each question:

a) Write the standard form of a linear equation in two variables (in general). Then give an example.
b) Write the slope-intercept form of a line (in general). Then give an example and specify the slope and y intercept.
c) Write the point-slope form of a line (in general). Then give an example and specify the point and slope.
d) Explain the relationship between two parallel lines and their slopes. Then give an example of two lines that are parallel; that is, write their equations. Specify how you know they are parallel and distinct.
e) Explain the relationship between two perpendicular lines and their slopes. Then give an example of two lines that are perpendicular; that is, write their equations. Specify how you know they are perpendicular.
f) Write a mathematical formula for the slope of a line (in general).
6. Graph each line on a separate coordinate system showing the intercepts (whenever appropriate). Label the axes and all the points used.
a) $2 x-3 y=0$
b) $2 x-5=0$
c) $y+4=0$
7. Let $3 x+4 y=36$ be a linear equation in two variables. Answer the following questions:
a) What is the slope of the given line?
b) What is the slope of a line parallel to the given line?
c) What is the slope of a line perpendicular to the given line?
d) What are the coordinates of the x - and y-intercepts?
8. Do the following:
a) Write an equation of the line with slope 3 and y-intercept $(0,-2)$.
b) Write an equation of the line with slope $\frac{1}{2}$ passing through the point $(-1,3)$. Then put the equation in slope-intercept form and standard form.
c) Write an equation of the line passing through the points $(3,-1)$ and $(2,5)$.
9. If one added to three times a number is three less than four times the number, find the number. Clearly define your variable and write an equation to represent the problem.
10. The perimeter of a rectangle is 36 yd. The width is 18 yd less than twice the length. Find the length and the width of the rectangle. Clearly define the variable(s), translate the problem mathematically and solve the equation(s).
11. Let

$$
\left\{\begin{array}{l}
2 x-y=4 \\
2 x+3 y=12
\end{array} \quad\right. \text { be a system of two linear equation in two variables. }
$$

Do the following:
a) Solve the system graphically. Clearly show how you are graphing. Identify the solution on the graph.
b) Solve the system using the substitution method.
c) Solve the system using the elimination method.
12. The table shows online retail spending R in billions of dollars t years after 1998.

t	R
1	15
3	35

a) Which variable is independent and which one is dependent?
b) What does the ordered pair $(1,15)$ mean in the context of this problem?
c) Assuming that the online retail spending grows at a linear rate, find the slope and its meaning in this context.

PART II - Choose TWO of the following problems. You may solve one other problem for extra credit.
For each problem, define the variable(s) clearly, then translate the problem mathematically and solve the equation(s).

1. How many liters of a 4% acid solution should be mixed with 50 liters of a 1% solution to obtain a solution that is 2% acid?
2. Mark is saving money for college. He deposited some money in a savings account paying 4% and $\$ 3000$ more than that amount in a second account paying 6%. The two accounts produced a total of $\$ 780$ interest in 1 year. How much did he invest at each rate?
3. A movie theater has two ticket prices: $\$ 8$ for adults and $\$ 5$ for children. If the box office took in $\$ 4116$ from the sale of 600 tickets, how many tickets of each kind were sold?
4. Mary counted the money in her piggy bank. She found that she had only quarters and dimes. When she added up her money, she found that she had 39 coins worth a total of $\$ 7.50$. How many coins of each kind did she have?

TEST I- SOCCTIONS

$$
\begin{aligned}
& (1)\left[-x^{2}+x(2 x-(5-x))\right]= \\
= & x\left[-x^{2}+x(2 x-5+x)\right] \\
= & x\left[-x^{2}+x(3 x-5)\right] \\
= & x\left[-x^{2}+3 x^{2}-5 x\right) \\
= & x\left(2 x^{2}-5 x\right) \\
= & 2 x^{3}-5 x^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 11 x-5(x+2)=6 x+5 \\
& 11 x-5 x-10=6 x+5 \\
& 6 x-10=6 x+5
\end{aligned}
$$

Controdidin
There are no solutions.

$$
x \in \varnothing
$$

(d) $\frac{5 a+1}{6}=\frac{2-a}{3}$
crom-product propi,y \Rightarrow
(a) $2(8 y+1)-3(2-5 y)+2(1-14 y)=0$

$$
16 y+2-6+15 y+2-28 y=0
$$

$$
3 y-2=0
$$

$$
\begin{aligned}
& 3 y=2 \\
& y=\frac{2}{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{4}{5} x+\frac{1}{10} x-\frac{20}{18}=\frac{1}{20} x \\
& L C D=20 \\
& 8 x+2 x-360=x \\
& 10 x-360=x \\
& 10 x-x=360 \\
& 9 x=360 \\
& x=\frac{360}{9} \\
& x=40
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{crom-a}-1)=6(2-a) \\
& 3(5 a+1) \\
& 15 a+3=12-6 a \\
& 15 a+6 a=12-3 \\
& 21 a=9 \\
& a=\frac{9}{21}=\frac{3}{7} \\
& a=\frac{3}{7}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& 3(6-4 b)=2(-6 b+9) \\
& 12 b+18
\end{aligned}
$$

$$
18-12 b=-12 b+18
$$

id eutity
Ang real number is a solution
$b \in \mathbb{R}$
(f)

$$
\begin{aligned}
& \frac{1}{6} m=\frac{3}{4} m \\
& \frac{m}{6}=\frac{3 m}{4}
\end{aligned}
$$

uncoro - vo duct property

$$
\begin{aligned}
& 4 m=6.3 \mathrm{~m} \\
& 4 m=18 \mathrm{~m} \\
& 0=18 \mathrm{~m}-4 \mathrm{~m} \\
& 0=14 \mathrm{~m} \\
& m=01
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \text { (a) }-3(2 x-1) \leq 4 \\
& -6 x+3 \leq 4 \\
& -6 x \leq 4-3 \\
& -6 x \leq 1
\end{aligned}
$$

$$
x \geqslant \frac{-1}{6}
$$

$$
x \in\left[-\frac{1}{6}, \infty\right)
$$

(b)

$$
\begin{aligned}
& -12 \leq \frac{1}{2} t+1<4 \\
& -12-1 \leq \frac{1}{2} t<4-1 \\
& -13 \leq \frac{1}{2} t<3
\end{aligned}
$$

$-26 \leq t<6$
(h)

$$
\begin{aligned}
& C=\frac{5}{9}(F-32), F= \\
& 9 C=5(F-32), F \div 5 \\
& \frac{9 C}{5}=7-32 \\
& \frac{9 C}{5}+32=F \\
& F=\frac{9}{5} C+32
\end{aligned}
$$

(4) $x-5 y<10$ half ploce Boundory line

$$
x-5 y=10
$$

(d) Two lines ore pastille if and sally, if Henry hove the come stope.

$$
\begin{aligned}
& y=2 x+5 \\
& y=2 x-1 \\
& m_{1}=m_{2}=2 \\
& b_{1}=5 \text { ? do the limes } \\
& b_{2}=-1 \text { ore distinct }
\end{aligned}
$$

so $(0,0)=$ solution

(5) (a) $a x+b y=c$

$$
2 x-7 y=5
$$

(b)

$$
\begin{aligned}
& y=m x+b \\
& y=3 x+4
\end{aligned}\left\{\begin{array}{l}
m=3 \\
(0,4)=y-n
\end{array}\right.
$$

(c)

$$
\begin{aligned}
& y-y_{1}=m(x-x) \\
& y-3=-\frac{1}{2}(x+5) \\
& \left\{\begin{array}{l}
m=-\frac{1}{2} \\
(-5,3)-p o i n t ~ m ~ t h e ~ l i n e ~
\end{array}\right.
\end{aligned}
$$

The two limes one distinct oud they hove the some shit, os they se parallel
(e) Tho lines se tupuadiche. H and only, th the nov duct of their slops is -1

$$
\begin{aligned}
& 5-1 \\
& y=3 x+7 \\
& y=-\frac{1}{3} x+2
\end{aligned}
$$

$m_{1}=3$

$$
\begin{aligned}
& m_{1}=3 \\
& m_{2}=-\frac{1}{3}
\end{aligned}
$$

sud $m_{1} \cdot m_{2}=-1$
so the limes ore 1
(7)

$$
\begin{aligned}
& m=\frac{\Delta y}{\Delta x} \\
& m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\end{aligned}
$$

where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ \in line
(c) (a)

(8) (a)

$$
\begin{aligned}
& m=3 \\
& (0,-z)=y-n
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 2 x-5=0 \\
& 2 x=5 \\
& x=\frac{5}{2}
\end{aligned}
$$

verticee line
(c) $y+4=0$

(b)

$$
\text { b) } \begin{aligned}
& m=\frac{1}{2} \\
& (-1,3) \\
& y-y,=m(x-x) \\
& y-3=\frac{1}{2}(x-(-1)) \\
& y-3=\frac{1}{2}(x+1)
\end{aligned}
$$

$$
y-3=\frac{1}{2} x+\frac{1}{2}
$$

$$
y=\frac{1}{2} x+\frac{1}{2}+3
$$

(7) $3 x+4 y=36$

$$
y=\frac{1}{2} x+\frac{1}{2} \quad \text { slopen }
$$

(a) $4 y=-3 x+36 \quad \mid \div 4$ $-\frac{1}{2} x+y=\frac{7}{2}$ shoulord

$$
\begin{aligned}
& y=\frac{-3}{4} x+\frac{36}{4} \\
& y=\frac{-3}{4} x+9, \text { so } m=\frac{-3}{4}
\end{aligned}
$$

(C) $(3,-1)$ ond $(2,5)$

$$
m=\frac{\Delta y}{\Delta x}=\frac{5-(-1)}{2-3}=\frac{6}{-1}
$$

(b) l_{1} Il l_{2} iff $m_{1}=m_{2}$

$$
m=-6
$$ $m=-6$

so $m_{11}=-\frac{3}{4}$
Use $m=-6$ and $(2,5)$
(c) $l_{1} \perp l_{2}$ iff $m_{1}=\frac{-1}{m_{2}}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-5=-6(x-2)
$$

so $m_{1}=\frac{4}{3}$
(d) $\begin{array}{rl}\bar{x} y & y \\ 0 & 9 \\ 12 & 0 \\ (0,9) & =y-1 \\ (12,0) & =x-10\end{array}$

$$
\begin{aligned}
& m=3 \\
& y=m x+6 \\
& y=3 x-2
\end{aligned}
$$

(9) let $x=$ the montrer

$$
\begin{aligned}
& 3 x+1=4 x-3 \\
& 1+3=4 x-3 x \\
& 4=x
\end{aligned}
$$

so $x=4$
The number an'th the sinem Mroperty is 4.
(10) perimuter $=36 y \mathrm{y}$

Thetrod I
let $l=$ lugsth
then $2 l-18=$ uidth
Penimeter $=36$

$$
\begin{aligned}
& 2 l+2(2 l-18)=36 \\
& 2 l+4 l-36=36 \\
& 6 l=72 \\
& l=\frac{72}{6}=12
\end{aligned}
$$

then al $-18=2(12)-18=6$
The emith is $12 y d$
The midth is $6 y d$

Metwo d I
let $l=$ lemsth
$\omega=m d t h$

$$
\left\{\begin{array}{l}
w=2 l-18 \\
2 l+2 w=36
\end{array} \div 2\right.
$$

$$
\{w=2 l-18
$$

$$
\left\{\begin{array}{l}
\text { l+ } w=18
\end{array}\right.
$$

subtitutin suetleod \Rightarrow

$$
l+(2 l-18)=18
$$

$$
\begin{aligned}
& l+(2 l-18)=l=12 \\
& 3 l=36 \Rightarrow l 2)-18=
\end{aligned}
$$

then $w=2(12)-18=6$
(11) $\left\{\begin{array}{l}2 x-y=4 \\ 2 x+3 y=12\end{array}\right.$
(a) Grpplical method.

$$
\begin{aligned}
& 2 x-y=4 \\
& x_{1} y
\end{aligned}
$$

$$
\begin{array}{ll}
x & y d \\
\hline 0 & -4 \\
2 & 0
\end{array}
$$

$2 x+3 y_{y}=12$

y_{1}	$2 x+3 y_{y}$
	0

(b) Substitution métleod

$$
\begin{array}{r}
\left\{\begin{array}{l}
2 x-y=4 \\
2 x+3 y=12
\end{array}\right. \\
2 x-y=4 \\
2 x-4=y \\
y=2 x-4
\end{array}
$$

(12)

t	R
1	15
3	35

$t=\underset{\substack{\text { muchlor of } \\ 1998}}{ }$ yeors ofter
$R=$ online retail speuding (mi billins of $\$$)
(a) $t=$ nide penduct
$R=$ dependuct voiable
(b) $(1,15): t=1, R=15$
yoor after 1998 (1n 1999)
pre riline setoil
spueding was 15 billice of
(c) $m=\frac{\Delta R}{\Delta t}=\frac{35-15}{3-1}=\frac{20}{2}=10$
$m=10$ billin $\$ /$ yeor
The slope shows the rete of inctrox of the online retail spuading per yeor
The raline retail sucding increases at a rete of 10 billim $\$$ par yoor.
solutin $=(3,2)$.

(1) 4%

$$
\begin{array}{|}
x \\
\text { eiten }
\end{array}+\begin{aligned}
& 50 \\
& \text { liten }
\end{aligned}=\begin{aligned}
& x+50 \\
& \text { liten }
\end{aligned}
$$ and 9000ϕ at 6%.

Metleod II) let $x=\$$ at 4% $y=\notin$ at 6%
let $x=$ the number of liten of the 4% solutin

$$
\begin{aligned}
& 4 \% x+1 \%(50)=2 \%(x+50) \\
& \frac{4}{100} x+\frac{1}{100} \cdot 50=\frac{2}{100}(x+50) / 100 \\
& 4 x+50=2(x+50) \\
& 4 x+50=2 x+100 \\
& 4 x-2 x=100-50 \\
& \left.2 x=50 \Rightarrow \left\lvert\, \begin{array}{l}
x=25 \text { eliten } \\
4 \% \text { so bute }
\end{array}\right.\right)
\end{aligned}
$$

100 and solve the $5 y$ stem using substitutim (foreanyle)
(3) let $a=$ unulor of odult tidets
$C=$ mubler of cluloren tichett
$\left\{\begin{array}{l|l}a+c=600 & -5 \\ 8 a+5 c=4116\end{array}\right.$

$$
\left\{\begin{array}{l}
a+c=600 \\
8 a+5 c=4116
\end{array}\right.
$$

use Elimuination notevel

$$
\left\{\begin{array}{l}
-5 a-5 c=-3000 \\
-5 c=4116
\end{array}\right.
$$

Metend I

$$
\begin{aligned}
& -5 a-5 c=-8116 \\
& 8 a+5 c=4
\end{aligned}
$$

let $x=$ amount at 4%
then $x+3000=$ a mount at 6%
Then, Tobl intevest $=780$

$$
\begin{aligned}
& 4 \% x+6 \% \cdot(x+3000)=780 \\
& \left.\frac{4}{100} x+\frac{6}{100}(x+3000)=780 \right\rvert\, .100
\end{aligned}
$$

$$
a+c=600
$$

$$
372+C=600
$$

$$
\begin{array}{r}
31 \alpha+c-60=228 \\
c=600-372=\begin{array}{r}
\text { advect t }
\end{array}
\end{array}
$$ aduct tichb

They seed 228 odult tichb sued 372 childser tidab
(7) Let $x=$ the umber of quortes
$y=$ the umber of dinues
$\left\{\begin{array}{l}x+y=39 \quad \text { oto to be muler if coirs is } 39 \\ \text { to tal velue is } 7.50 \neq 7=750\end{array}\right.$

$$
\left\{\begin{array}{l}
x+y=39 \\
25 x+10 y=750
\end{array}\right\} \text {-to to be umber volue is } 7.50 \$ 7=750 \mathrm{cut}
$$

Ute eliminotin metler d

$$
\left\{\begin{array}{l}
-10 x-10 y=-390 \\
25 x+40 y=750 \\
15 x=360 \\
x=\frac{360}{15}=24 \text { quortess } \\
x+y=39 \\
24+y=39 \\
y=39.24=15 \text { dimes }
\end{array}\right.
$$

She hod 24 quorters on 15 dimes

