TEST \#2 @ 145 points

Write neatly. Show all work. Write all proofs on separate green paper. Label each exercise.

1) Complete the following definitions, properties, theorems, or formulas:
a) The Max - Min Inequality for Definite Integrals:

$$
\text { If } m \leq f(x) \leq M \text { for } x \in[a, b] \text {, then }
$$

\qquad
b) Write the definition of the definite integral using Riemann sums and support your answer with a graph.
c) What is a critical number for a function defined on an interval I ?
d) $\frac{d}{d x} \int_{a}^{x} f(t) d t=$ \qquad
e) What is an inflection point?
f) $\frac{d}{d x}\left(\log _{a} x\right)=$ \qquad
g) $\int x^{n} d x=$ \qquad
h) $\int \frac{1}{x} d x=$ \qquad
2) Find the critical numbers for the following function:

$$
f(x)=\sqrt[3]{x^{2}-x}
$$

3) Find the absolute minimum and maximum values for the following function on the given interval:

$$
f(x)=x-2 \sin x, x \in[0,3 \pi]
$$

4) Let $f(x)=\frac{x}{(1+x)^{2}}$. Do the following:
a) Graph the following function. Show: end behavior, behavior near vertical asymptotes (if any), intercepts, first and second derivative. Show all work and organize the information in a table. Label all points used.
b) What are the maximum and minimum values of the function?
c) What are the inflection points?
d) On what interval(s) is the function increasing? Decreasing?
e) On what interval(s) is the function concave up? Down?
5) Find the following limits:
a) $\lim _{x \rightarrow \infty}(\ln 2 x-\ln (x+1))$
b) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}$
c) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x$
6) Find the following:
a) $\int \ln x d x$
b) $\int_{-1}^{3}\left(4+3 x^{3}\right) d x$
c) $\int_{1}^{2}\left(\frac{1}{x}-e^{-x}\right) d x$
d) $\int\left(2^{t+1}-\sin t\right) d t$
e) $\int e^{x} \sin x d x$
f) If $y=\int_{\tan x}^{0} \frac{d t}{1+t^{2}}$, find $\frac{d y}{d x}$.
7) Graph the integrand and use areas to evaluate the integral:

$$
\int_{-3}^{3} \sqrt{9-x^{2}} d x
$$

8) Find the total area between the region and the x-axis:

$$
y=x^{3}-3 x^{2}+2 x, 0 \leq x \leq 2
$$

9) Graph the given function $f(x)=3 x^{2}$ between $x=0$ and $x=1$. Then:
a) Using four rectangles whose height is given by the value of the function at the right-end of each subinterval, estimate the area under the graph.
b) Find the exact area under the graph.
10) Suppose that f is a differentiable function shown in the accompanying graph and that the position at time $t(\sec)$ of a particle moving along a coordinate axis is
$s=\int_{0}^{t} f(x) d x$
meters. Use the graph to answer the following questions. Give reasons for your answers.
a) What is the particle's velocity at $t=5$?
b) Is the acceleration at time $t=5$ positive or negative?
c) What is the particle's position at time $t=3$?
d) Approximately when is the acceleration zero?
e) On which side of the origin does the particle lie at time $t=9$?

11) A rectangle has its base on the x-axis and its upper two vertices on the parabola $y=12-x^{2}$. What is the largest area the rectangle can have, and what are its dimensions?

TEJ 2- LOMTIONS 1
(1a) if $m \leq f(x) \leq M, \forall x \in[a, b]$,
then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$
(f) $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$
(b) $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$
(g) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
where f : continumises fot on $[a, b]$
(h) $\int \frac{1}{x} d x=\ln |x|+C(x \neq 0)$
$\Delta x=\frac{6-a}{n}$
$c_{1}, c_{2}, c_{n}=$ somple poist $c_{k} \in\left[x_{k-1}, x_{k}\right]$
(2) $f(x)=\sqrt[3]{x^{2}-x}=\left(x^{2}-x\right)^{1 / 3}$
somain: $x \in \mathbb{R}$

$$
\begin{aligned}
& \text { domain: } \\
& f^{\prime}(x)=\frac{1}{3}\left(x^{2}-x\right)^{3-1}(2 x-1) \\
& f^{\prime}(x)=\frac{2 x-1}{3\left(x^{2}-x\right)^{2 / 3}} \\
& f^{\prime \prime}(x)=0 \text { iff } 2 x-1=0 \text { iff } x=\frac{1}{2} \\
& f^{\prime}(x) \text {. medefined iff } \quad \begin{array}{r}
x^{2}-x=0 \\
x(x-1)=0 \\
x=0 \text { or } x=1
\end{array}
\end{aligned}
$$

(c) c is a critical number for f if $c \in$ i aud $f^{\prime}(c)=0$ or $f^{\prime}(c)$ unde fined.

Critical sumbers:

$$
x=0, x=1, x=\frac{1}{2}
$$

(d) $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
(3) $f(x)=x-2 \sin x, x \in[0,3 i]$

$$
f^{\prime}(x)=1-2 \cos x
$$

(e) An wiflectix point is a point where the erople of the fuenctins chouger mencasity

$$
f^{\prime}(x)=0 \text { iff } 1-2 \cos x=0
$$

$$
\cos x=\frac{1}{2}
$$

$x=\frac{\pi}{3}+2 j k \quad$ or $x=2 \pi-\frac{\pi}{3}+2 j k$

$$
\begin{array}{ll}
k=0, & x=\frac{\pi}{3}, \quad x=\frac{5 \pi}{3} \quad k \in \mathbb{Z} \\
k=1, & x=\frac{\pi}{3}+2 \pi=\frac{\pi}{3}
\end{array}
$$

Critical number

$$
x=\frac{\pi}{3}, x=\frac{5 \pi}{3}, x=\frac{\pi}{3} \quad \lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x}{(1+x)^{2}}=\frac{-1}{0^{+}}=-\infty
$$

Enomate 7 at the end point so V.A. $x=-1$ sud critical point:

$$
x-n: y=0 \text { if } x=0
$$

$$
\begin{aligned}
& f(0)=0-2 \sin 0=0 \\
& f(3)=3 \pi-2 \sin 3 \pi=3 \pi \\
& f\left(\frac{\pi}{3}\right)=\frac{\pi}{3}-2 \sin \frac{\pi}{3}=\frac{\pi}{3}-2 \frac{\sqrt{3}}{2}=\frac{\pi}{3}-\sqrt{3} \\
& f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}-2 \sin \frac{5 \pi}{3}=\frac{5 \pi}{3}-2\left(-\frac{\sqrt{3}}{2}\right) \\
&=\frac{5 \pi}{3}+\sqrt{3} \\
& f\left(\frac{\pi}{3}\right)==\pi \cdot 2 \sin \frac{\pi}{3}=\frac{\pi}{3}-\sqrt{3}
\end{aligned}
$$

$$
\left(f^{\prime}\right) f^{\prime}(x)=\frac{1 \cdot(1+x)^{2}-2(1+x)(x)}{(1+x)^{4}}
$$

$$
f^{\prime}(x)=\frac{(1+x)(1+x-2 x)}{(1+x)^{4}}=\frac{(1+x)(1-x)}{(1+x)^{4}}
$$

$$
f(x)=\frac{1-x}{(1+x)^{3}}
$$

$$
f^{\prime}(x)=0 \text { if } \quad 1-x=0, \quad x=1
$$

a solute min. is $f\left(\frac{\pi}{3}\right)=\frac{\pi}{3}-\sqrt{3}$ absolute max is $f(3 \pi)=3 \pi$

$$
f(1)=\frac{1}{(1+1)^{2}}=\frac{1}{4}
$$

sign if $f^{\prime}(x)$. TP $\left\{\begin{array}{l}x=-10, y<0 \\ x=0, y>0 \\ x=10, y<0\end{array}\right.$
$\left(f^{\prime \prime}\right) f^{\prime \prime}(x)=\frac{(-1)(1+x)^{3}-3(1+x)^{2}(1-x)}{(1+x)^{6}}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{(1+x)^{2}(-1-x-3(1-x))}{(1+x)^{6}} \\
& f_{0}^{\prime \prime}(x)=\frac{-1-x-3+3 x}{(1+x)^{4}}=\frac{2 x-4}{(1+x)^{4}}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0 \text { if } 2 x-4=0, x=2
$$

$$
f(2)=\frac{2}{(1+2)^{2}}=\frac{2}{9}
$$

(f) Domain: $x \in \mathbb{R} \backslash\{-1\} \quad f(2)=\frac{2}{(1+2)^{2}}=\frac{2}{9}$ $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{ \pm \infty} \frac{\frac{x}{x^{2}}}{\left(\frac{1}{x}+1\right)^{2}}=\frac{0}{0+1}=0$ The sion $y f^{\prime \prime}(x)$ is given by the sign of $y=2 x-4$.

$$
=\ln 2
$$

(b) absolute mox/local nemx $=\left(1, \frac{1}{4}\right)=e^{\lim _{x \rightarrow 0} \frac{1}{x} \ln (1-2 x)}$
(c) $\left(2, \frac{2}{9}\right)=$ wiflectin point
(d) f is micreasing on $(-1,1)$

$$
\begin{align*}
& \text { (b) } \lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}=1^{\infty} \tag{t}\\
& =\lim _{x \rightarrow 0} e^{\ln (1-2 x)^{\frac{1}{x}}}= \\
& =\lim _{x \rightarrow 0} e^{\frac{1}{x} \ln (1-2 x)}
\end{align*}
$$ no minuinumu

$$
f \text { is dectabivg } b(-\infty,-1)
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{x} \ln (1-2 x)= \\
= & \lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{x}=\frac{0}{0}\left(1^{\prime} \text { Hopitol }\right) \\
= & \lim _{x \rightarrow 0} \frac{(\ln (1-2 x))^{\prime}}{x^{\prime}}
\end{aligned}
$$

f is decteasivy $m[1, \infty)$
(c) f is concave up on $[2, \infty)$ f is coucave down on

$$
=\lim _{x \rightarrow 0} \frac{\frac{1}{1-2 x}(-2)}{1}
$$ $(-\infty,-1) \cup(-1,2)$

$$
=\ln \lim _{x \rightarrow \infty} \frac{2}{1}
$$

$$
=\lim _{x \rightarrow 0} \frac{-2}{1-2 x}=\frac{-2}{1}=-2
$$

(5) (a) $\lim _{x \rightarrow \infty}(\ln 2 x-\ln (x+1))=$ Therefores (t)

$$
=\lim _{\infty} \ln \frac{2 x}{x+1}
$$

$$
\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}=e^{-2}
$$

$=\ln \lim _{x \rightarrow \infty} \frac{2 x}{x+1} \cdot\left(\frac{6}{\infty}\right.$-1 Hopitol)

$$
=\ln \lim _{x \rightarrow \infty} \frac{(2 x)^{\prime}}{(x+1)^{\prime}}
$$

(c)

$$
\text { (c) } \begin{aligned}
& \lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x=0 \cdot(-\infty) \\
& =\lim _{x \rightarrow 0^{+}} \frac{-4-}{\frac{\ln x}{\sqrt{x}}}=\frac{\infty}{\infty}\left(1^{\prime}\right. \text { Hopitbl) } \\
& =\lim _{0^{+}} \frac{(\ln x)^{\prime}}{\left(x^{-\frac{1}{2}}\right)^{\prime}}
\end{aligned}
$$

$$
\left.=4(3-(-1))+3 \cdot \frac{x^{4}}{4}\right]_{-1}^{3}
$$

$$
=4(4)+\frac{3}{4}\left(3^{4}-(-1)^{4}\right)
$$

$$
=16+\frac{3}{4}(81-1)=16+\frac{3}{4} \cdot 80
$$

$$
=16+3(20)=76
$$

$$
=\lim _{0^{+}} \frac{\frac{1}{x}}{-\frac{1}{2} x^{-\frac{1}{2}-1}}
$$

$$
\begin{aligned}
& \text { (c) } \int_{1}^{2}\left(\frac{1}{x}-e^{-x}\right) d x= \\
& =\int_{1}^{2} \frac{1}{x} d x-\int_{1}^{2} e^{-x} d x \\
& \left.=\ln |x|]_{1}^{2}-\frac{e^{-x}}{-1}\right]_{1}^{2} \\
& \left.=(\ln 2-\ln 1)+e^{-x}\right]_{1}^{2} \\
& =\ln 2-0+e^{-2}-e^{-1} \\
& =\ln 2+\frac{1}{e^{2}}-\frac{1}{e}
\end{aligned}
$$

(6)
(a) $\int \ln x d x=x \ln x-\int \frac{1}{x} \cdot x d x$ integrotion by parts:

$$
\left[\begin{array}{rl}
f & =\ln x \longmapsto g^{\prime}=1 \\
f^{\prime} & =\frac{1}{x} \longleftrightarrow g=x \\
& <x \ln x-\int d x \\
& =x \ln x-x+C
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (d) } \begin{array}{l}
\int\left(2^{t+1}-\sin t\right) d t= \\
=\int 2^{t+1} d t-\int \sin t d t \\
=\frac{2^{t+1}}{\ln 2}-(-\cos t)+C \\
=\frac{2^{t+1}}{\ln 2}+\cos t+C
\end{array}, \$ \text { C }
\end{aligned}
$$

(6) $\int_{-1}^{3}\left(4+3 x^{3}\right) d x=\int_{-1}^{3} 4 d x+$

$$
+3 \int_{-1}^{3} x^{3} d x
$$

(e) let $j^{\prime}=\int e^{x} \sin x d x$ Integuation by port.

$$
\begin{aligned}
& {\left[f=e^{x} \quad g^{\prime}=\sin x\right.} \\
& l_{f^{\prime}}=e^{x} \longleftarrow g=-\cos x \\
& i=-e^{x} \cos x-\int e^{x}(-\cos x) d x \\
& j=-e^{x} \cos x+\int e^{x} \cos x d x \\
& {\left[\begin{array}{l}
f=e^{x} \\
f^{\prime}=e^{x} \longleftarrow g^{\prime}=\cos x \\
g=\sin x
\end{array}\right.} \\
& j=-e^{x} \cos x+\left(e^{x} \sin x-\int e^{x} \sin x d x\right) \\
& i=-e^{x} \cos x+e^{x} \sin x-1 \\
& 2 i=-e^{x} \cos x+e^{x} \sin x \\
& i=\frac{e^{x}(\sin x-\cos x)}{2}+C \\
& \text { (7) }
\end{aligned}
$$

(f) $y=\int_{\tan x}^{0} \frac{d t}{1+t^{2}}$

$$
\begin{gathered}
y=-\int_{0}^{\tan x} \frac{d t}{1+t^{2}} \\
\frac{d y}{d x}=-\frac{d^{\prime}}{d x} \int_{0}^{\tan x} \frac{d t}{1+t^{2}}
\end{gathered}
$$

let $\tan x=u$

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{d}{d x} \int_{0}^{u} \frac{d t}{1+t^{2}} \\
& =-\left(\frac{d}{d u} \int_{0}^{u} \frac{d t}{1+t^{2}}\right) \frac{d u}{d x} \\
\frac{d y}{d x} & =-\frac{1}{1+u^{2}} \cdot \frac{d u}{d x} \\
\frac{d y}{d x} & =\frac{-1}{1+\tan ^{2} x} \cdot \sec ^{2} x
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{-1}{\sec ^{2} x} \cdot \sec ^{2} x
$$

$$
\frac{d y}{d x}=-1
$$

$$
\int_{-3}^{3} \sqrt{9-x^{2}} d x
$$

let $y=\sqrt{9-x^{2}} \geqslant 0, \forall x \in[-3,3]$ upper secuicircle center $(0,0), r=3$

$$
\left(y^{2}=9-x^{2}, \quad x^{2}+y^{2}=9\right)
$$

Lo, $\int_{-3}^{3} \sqrt{9-x^{2}} d x=$ sua ander

$$
=\frac{1}{2} \pi(3)^{2}=\frac{9 \pi}{2}
$$

(8) $y=x^{3}-3 x^{2}+2 x, \quad 0 \leq x \leq 2$
(a) Area $=A$
$x-n$:

$$
\text { n: } \begin{gathered}
x^{3}-3 x^{2}+2 x=0 \\
x\left(x^{2}-3 x+2\right)=0 \\
x(x-2)(x-1)=0 \\
x=0, \quad x=1, \quad x=2
\end{gathered}
$$

$$
\begin{aligned}
& \text { (a) Area }=A \\
& A \approx \frac{1}{4} f\left(\frac{1}{4}\right)+\frac{1}{4} f\left(\frac{1}{2}\right)+\frac{1}{4} f\left(\frac{3}{4}\right)+ \\
& 1,1(1)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{4} f(1) \\
A \approx & \frac{1}{4}\left(3 \cdot\left(\frac{1}{4}\right)^{2}+3\left(\frac{1}{2}\right)^{2}+3 \cdot\left(\frac{3}{4}\right)^{2}+3(1)^{2}\right. \\
& \left.\frac{1}{1}+9+1\right)
\end{aligned}
$$

Area $=A=\left|\int_{0}^{1} y d x\right|+\left|\int_{0}^{2} y d x\right|$
$A=\left|\int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x\right|+\left|\int_{1}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x\right|$ $=\frac{3}{4}\left(\frac{1}{16}+\frac{4}{4}+\frac{9}{16}+\frac{16}{1}\right)$

$$
\begin{aligned}
& =\overline{4}\left(\overline{1}^{16}+16\right. \\
& =\frac{3}{4} \cdot \frac{1+4+9+16}{16}=\frac{3}{4} \cdot \frac{32^{15}}{16}
\end{aligned}
$$

$A=\left|\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}\right|+\left|\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{1}^{2}\right|$

$$
A \approx \frac{45}{32}
$$

$A=\left|\left(\frac{1}{y}-1+1\right)-0\right|+\left|\left(\frac{2^{4}}{4}-2^{3}+2^{2}\right)-\left(\frac{1}{4}-1+1\right)\right|$

$$
A=\left|\frac{1}{4}\right|+\left|4-8+4-\frac{1}{4}\right|
$$

$$
A=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

(9) $f(x)=3 x^{2}, \quad x \in[0,1)$

(b) $f(x) \geqslant 0, \forall x \in[0,1]$

Denfor,

$$
\begin{aligned}
& \text { Then poe, } \\
& \begin{aligned}
A & =\int_{0}^{1} 3 x^{2} d x=3 \int_{0}^{1} x^{2} d x \\
& \left.=3 \cdot \frac{x^{3}}{3}\right]_{0}^{1}=x^{3} \int_{0}^{1}=1^{3}-0 \\
A & =1
\end{aligned}
\end{aligned}
$$

(r) $S=\int_{0}^{t} f(x) d x$ vorition fet.
(e) $S=\int_{0}^{9} f(x) d x$ sines the

Then $\frac{d s}{d t}=$ velocily fet.
porition of the particle at $t=9$.

$$
\frac{d s}{d t}=\frac{d}{d t} \int_{0}^{t} f(x) d x=f(t)
$$

becouse the rea above the x-anib is suster Hisu tue orea helow the x-axis, $\int_{0}^{9} f(x) d x>0$ meoning thot the parlicle is on the ruight side of the ousin.
(a) $t=5, \quad f(5)=2$
(b) $\frac{d^{2} s}{d t^{2}}=\frac{d f}{d t}=$ accelewtion

It $t=5$ the seope of the
(II) $\sum_{-2=12-x^{2}}^{p y}$
perobola quxing
down cith $x \rightarrow n: \quad(\pm 2 \sqrt{3}, 0)$ \therefore The area of the rectongle niscuiled is moxivecu iff Area ($O B C E$) $=$ mox Let $A(x)=$ trea (OBCE)

$$
\begin{aligned}
& \text { Let } A(x)=\text { Area }(O B C E) \\
& A(x)=x\left(12-x^{2}\right)=12 x-x^{3}, 0 \leq x \leq 2 \sqrt{3} \\
& A^{\prime}(x)=12-3 x^{2}=3\left(4-x^{2}\right) \\
& A^{\prime}(x)=0 \text { iff } x=2 \text { or } x-2 \\
& \quad \text { (not in }[0,2 \sqrt{3}])
\end{aligned}
$$

suluate $A^{\prime}(x)$ at $x=0, x=2, x=2 \sqrt{3}$

$$
A(0)=0
$$

$$
A / 2)=2(12-4)=32 \text { mox. }
$$

$$
A(2 \sqrt{3})=0
$$

fo the noximum orea occuss at $x=2$
Tre dimensises of the dectoigle must be 4 mint by $12-2^{2}=8$ vilts mox. orea is 64 so.mit.

