Name:

TEST 3 @ 130 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

- 1. Solve each equation in $\mathbb C$ (the set of complex numbers) by the indicated method.
 - a) $2(x+3)^2 + 80 = 0$ by the square root property.
 - b) $4y^2 = 3y 1$ by completing the square.
 - c) $\frac{2t^2}{5} + \frac{t}{2} = \frac{1}{5}$ by the quadratic formula.

d)
$$h = -16t^2 + \frac{23}{3}t$$
 solve for t in terms of h.

2. Solve the following equations. Give exact answers.

- a) $2x^4 3x^2 + 1 = 0$
- b) $\log_5(3x-1) 2 = 0$
- c) $4^x = 13$ Give both exact and approximate answers.
- d) $\log_8(x+5) \log_8 2 = 1$

3. Solve the following inequalities.

a) $x^2 - 6x + 5 \le 0$ b) $\frac{1}{x - 5} < \frac{3}{2 - x}$

4. Let f(x) = 3x - 2 and $g(x) = \frac{2 - x}{x + 1}$. Answer the following questions: a) Find $(g \circ f)(x)$. b) $(f \circ g)(2)$ c) Find $f^{-1}(x)$. d) Find $g^{-1}(x)$. 5. Simplify the following expressions.

```
a) 4 \ln x + 7 \ln y - 3 \ln z

b) \frac{1}{2} (\log_5 x + \log_5 y) - 2 \log_5 (x+1)

c) \log_3 405 - \log_3 5 + \log 5 + \log 2

d) \log_{10} (\log_3 (\log_5 125))
```

6. For the equation given below, answer all the questions and graph the function (Be sure to label the axes and all points used). SHOW ALL WORK!

$$y = -2x^2 + x + 3$$

a) What type of curve is this?

- b) What is the y-intercept?
- c) What is the vertex

d) What are the x- intercept(s) (if any)?

e) What is the domain of the function?

f) What is the range of the function?

g) Using the graph above, solve the following inequality: $-2x^2 + x + 3 < 0$

h) What is the vertex form of the equation?

7. Find the domain of each function:

- a) $f(x) = -x^2 + 5x 7$
- b) $g(x) = 3^{x} 31$
- c) $h(x) = \ln(6-5x)$

8. Graph $f(x) = 5^x$ and $f^{-1}(x) = \log_5 x$ on the same coordinate system showing the symmetry about the bisector line y = x. Label the axes and all the points.

9. State whether each statement is TRUE or FALSE. Justify your answer.

a) $\log(a+b) = \log a + \log b$

b)
$$\log\left(\frac{a}{b}\right) \neq \frac{\log a}{\log b}$$

c) $\log 5x^2 = 2\log 5x$

d) $\log(ab) \neq (\log a)(\log b)$

Choose any FOUR of the following problems. You may solve the fifth problem for extra credit.

1) The number of bacteria present in a culture after t hours is given by the formula $N = 500e^{0.59t}$.

- a) How many bacteria will be there after $\frac{1}{2}$ hour?
- b) How long will it be before there are 500,000 bacteria?
- 2) The owners of a small fruit orchard decide to produce gift baskets as a sideline. The cost per basket for producing x baskets is $C = 0.01x^2 2x + 120$. How many baskets should they produce in order to minimize the cost per basket? What will their total cost be at that production level?

4) In a laboratory experiment, researchers establish a colony of 100 bacteria and monitor its growth. The experiments discover that the colony triples in population every day.

P(t)

 a) Fill in Table 1. showing the population, P(t), of bacteria t days later. b) Find a function that gives the population of the colony at any time t in days. c) Graph the function. Label the axes and the points used. d) How many bacteria will be present after 13 days? e) How long will it take before there are 37,000 bacteria? 	L	
	0	
	1	
	2	
	3	
	4	

5) India is currently one of the world's fastest-growing countries. By 2040, the population of India

will be larger than the population of China; by 2050, nearly one-third of the world's population will live in these two countries alone. The exponential function

$$f(x) = 574(1.026)^3$$

models the population of India, f(x), in millions, x years after 1974.

- a) What was India's population in 1974?
- b) Find f(27) and its meaning.
- c) Find India's population, to the nearest million, in the year 2028 as predicted by this function.
- d) How long will it be until the population reaches 1000 million people?

MATHTI TET3-Solendons $4t^{2}+5t-2=0$ squar not $(i) a) 2(x+3)^2 + 80=0$ 1 a = 4 6=5 1 property $t = \frac{-5 \pm 15^{\circ} - 48c}{28}$ $2(x+3)^2 = -80$ c = -2 $(X+3)^2 = -40$ $t = \frac{-5 \pm \sqrt{25 - 4(4)(-2)}}{25 - 4(4)(-2)}$ $\sqrt{(x+3)^2} = \sqrt{-40}$ 2/4/ X+3= + 140 i $= \frac{-5 \pm \sqrt{25 + 32}}{32}$ $X = -3 \pm 2\sqrt{10}i$ b) 4y2 = 3y-1 by completing the squar $t = \frac{-5 \pm \sqrt{57}}{8} /$ 1st i plate the constant 4y²-3y=-1 / -: 4 d) $h = -16t^2 + \frac{23}{3}t$ solve port and leading we ficient 1 $y^{2} - \frac{3}{4}y = \frac{-1}{4} / \frac{9}{4}$ quodratic equation wit. 3rd minning tem $(\frac{1}{2}, \frac{3}{4})^2 = (\frac{3}{8})^2 = \frac{9}{64}$ Sciuninate the fractions, write the equation is standard form and apply the quodratic formula $y^2 - \frac{3}{4}y + \frac{9}{64} = \frac{-1}{4} + \frac{9}{64}$ 3h=-4822+23t $(y - \frac{3}{8})^2 = \frac{-16+9}{64}$ 48t2-23t+3h=0 $\left(y-\frac{3}{8}\right)^2 = \frac{-7}{64}$ a = 4P $t = \frac{-6 + \sqrt{5^2 - 4ac}}{2a}$ 6 = - 23 $\sqrt{\left(y-\frac{3}{\delta}\right)^2} = \sqrt{\frac{-7}{E_Y}}$ c = 3h $t = \frac{23 \pm \sqrt{529 - 4/48}}{34}$ $y - \frac{3}{8} = \pm \frac{\sqrt{7}i}{9}$ 2/48 $y = \frac{3}{8} + \frac{\sqrt{7}}{8}i$ $t = \frac{23 \pm \sqrt{529 - 5764}}{96}$ $\frac{2}{5} \frac{2t^2}{5} + \frac{t}{2} = \frac{2}{5}$ by quodratic formula Eliminate all foarting sed write the equation is standord pun: 100=10 $4t^{2}+5t=2$ $4t^{2}+5t-2=0$

(a)
$$log (x + 5) - log 2 = 1$$

(b) $log (x + 5) - log 2 = 1$
(b) $log \frac{x + 5}{2} = 1$
 $log \frac{x + 5}{2} = 1$
 $log \frac{x + 5}{2} = 1$
 $x + 5 = 16 = 2$ $x = 11$
(3) (a) $x^2 - 6x + 5 \le 0$
 $a + y = x^2 - 6x + 5 \le 0$
 $a + y = x^2 - 6x + 5$
 $po labola open up$
 $+ 1 + x$
 $x - 0: x^2 - 6x + 5 = 0$ $(x = 1)$
 $po labola open up$
 $+ 1 + x$
 $x - 0: x^2 - 6x + 5 = 0$ $(x = 1)$
 $(x - 1) + x = 5$
 $x^2 - 6x + 5 \le 0$ $1 + 1 + x$
 $x - 0: \frac{x^2 - 6x + 5 = 0}{(x - 1) + 1 - 5} = 0$ $(x = 5)$
 $x = 5$
 $x^2 - 6x + 5 \le 0$ $1 + 1 + x$
 $x - 5 + 2 - x$
 $\frac{x - 5}{x - 5} < \frac{3}{2 - x} < 0$
 $lco = (x - 5)(2 - x)$
 $\frac{(2 - x) - 3(x - 5)}{(x - 5)(2 - x)} < 0$
 $\frac{17 - 4x}{(x - 5)(2 - x)} < 0$
 $\frac{17 - 4x}{(x - 5)(2 - x)} < 0$
 $\frac{17 - 4x}{(x - 5)(2 - x)} < 0$
 $\frac{17 - 4x}{(x - 5)(2 - x)} < 0$

X -20 2 4 5 00 ++++0--17-4X - - 0+++ X-5 +++0---2-X - + 0 - + 17-4X (X-5)(2-X) $\frac{1}{x-5} < \frac{3}{2-x} \quad iff$ 17-4x 20 iff (x-5)(2-x) 20 iff $x \in (-\infty, 2) \cup (\frac{17}{4}, 5)$ (4) f(x) = 3x-2, $g(x) = \frac{2-x}{x+1}$ (a) $(g \circ f)(x) = g/f(x)$ = g(3X-2) $=\frac{2-(3x-2)}{(3x-2)+1}$ $=\frac{2-3x+2}{3x-1}$ $(2^{\circ}f)(x) = \frac{4-3x}{3x-1}$ $(b) (f \cdot g)(z) = f / g(z)) =$ = f(0) $g(2) = \frac{2-2}{2+1} = 0$ = 3(0) - 2(fog/(2) = - 2

(c) + (x) = 3x - 2 $y = 3x^{-2}$ volve for x and $3X = 2+\frac{y}{3}$ $X = \frac{2+\frac{y}{3}}{3}$ xa y 3rd $y = \frac{2+\chi}{3}$ $y''(\chi) = \frac{2+\chi}{3}$ (d) $g(x) = \frac{2-x}{x+1}$ $1st \quad y = \frac{2 \cdot x}{x + 1}$ and solve for X y(x+i) = 2-x yx + y = 2-xyx + x = 2 - 2 x(y+i) = z-y $X = \frac{2 - y}{y + 1}$ 3rd X cm y $y = \frac{2 - x}{x + 1}$ $f'(x) = \frac{2-x}{x+1}$

 $y = -2x^2 + x + 3$ (5) (5) y bux + 7 lug - 3 lu 2 = 6) porabola that opens domnwoods (a=-200) $= \ln x^{4} + \ln y^{7} - \ln z^{3}$ down woods (b) y - n' = x = 0, y = 3y - n' = (0,3)lux y - lu 2 $=\left[l_{u}\frac{x^{\prime}y^{\prime}}{z^{3}}\right]$ (c) V(Xu) Yu) $X_{v} = \frac{-6}{2a} = \frac{-7}{2(-2)} = \frac{1}{4}$ $\binom{b}{2} \frac{1}{2} \left(\log x + \log y \right) - 2 \log (X+1) =$ $y_{v} = -2\left(\frac{1}{4}\right)^{2} + \frac{1}{4} + 3$ $=\frac{1}{2} \log(xy) - \log((X+1))^2$ $= -2 \cdot \frac{1}{16} + \frac{1}{4} + 3$ $= \log_{5}(xy)^{2} - \log_{5}(x+1)^{2}$ $=\frac{-1}{8}+\frac{1}{4}+3=\frac{25}{12}$ $V\left(\frac{1}{4},\frac{25}{8}\right)$ $= \log \left(\frac{\sqrt{xy}}{(x+1)^2} \right)$ (d) $X - \Omega = -2x^2 + x + 3 = 0$ (-1) (c) $\log 405 - \log 5 + \log 5 + \log 2 =$ $2x^{2}-x-3=0$ $X = \frac{1 \pm \sqrt{1 - 4/2/(-3)}}{2(2)} = \frac{1 \pm 5}{4}$ $= \log_{3} \frac{405}{5} + \log_{10} 10$ X= == == or X= == -/ $= \log_3 81 + \log_1 10$ X-n: (3,0) aud (-1,0) = 4+1 = 57 4 v (4) 2) (d) log (log (log 125)) =(1213) = log (log 3) (^{32,0}) lo]10/ 0 $y = -2x^2 + x + 3$ = 10 1

e) Domain:
$$X \in \mathbb{R}$$

f) Rauge: $[h \in (-\infty, \frac{2V}{2})]$
g) $-2X^{2} + X + 3 < D$
 $X = ? \qquad Y < O$
 $[X \in (-\infty, -1) \qquad U(\frac{3}{2}, 20)]$
h) $Y = a(X - Xv)^{2} + \frac{4}{7}v$
 $V(\frac{4}{7}, \frac{25}{5}), a = -2$
 $[Y = -2(X - \frac{4}{7})^{2} + \frac{25}{8}]$
(7) @ $f(X) = -X^{2} + 5X + 7$
Domain: $[X \in \mathbb{R}]$
(6) $g(X) = \frac{3^{X} - 3}{7}$
Domain: $[X \in \mathbb{R}]$
(6) $h(X) = -4n(6 - 5X)$
Condition: $6 - 5X > O$
 $6 > 5X$
 $X < \frac{6}{5}$
Domain: $[X \in (-\infty, \frac{6}{5})]$

 $+|x|=5^{x}$ (8) Domoin: XER f(x)=5 0 0 5 2 2 5 3 4 3 (1x) = lag x HA Y=0 (0,1) ∕∕ (+) VA x=0 () a) log (a+5) = log a + log 6 (False) loga + log 5 = log(45) 6) $log(\frac{a}{5}) \neq \frac{log a}{log 5}$ TRUE log(a) = loga - logb

c) $\log 5x^2 = 2 \log 5x$ False $\log 5x^2 = \log 5 + 2 \log x$ $\log (a5) \neq (\log a) (\log 5)$ $True = \log(a5) = \log a + \log 5$

PART II N= 500 e 0.59t In order to universite the cost per basket, terry t=time(#hours) should produce 1006askets. N= #bacteria The cost per booket is then (a) t= 0.5 hn, N=? N= 500 e = 672 bactina) 920. The total cost at funt Affer 'z hour, there will be production level is 672 bacteria 100 baskets (20 \$/basleet) (b) t=? if N= 500,000 300,000 = 300 e^{0.59 t} = 2000 \$ e^{0.59t} = 1000 lu e^{0.54t} = lu 1000 (3) (a) See graph on test. 0.59t = Ju 1000 t = <u>lu 1000</u> ~ 11.7 hours (b) y=ux+6 Mere uill he 500,000 bartena $m = \frac{42}{1x} = \frac{2}{1} = 2$ after approximately 11.7 hours. y = zx - 2 f(x) = zx - 2the siren line 2) $C = 0.01x^2 - 2x + 120$ x = # boskets C = cost per basket $(c)^{i + y} = z x - z$ The equation appression ~ $2^{*''} 2X = Y + 2$ porabola that opens up, $\chi = \frac{y+2}{2}$ thenfor the minimum $y = \frac{x+2}{2}$ occurs at the writex $\left| \frac{x+2}{x} \right| = \frac{x+2}{x} / \frac{x+2}{x}$ V(Xv)Cv) $X_{V} = \frac{-5}{2a} = \frac{-(-2)}{2(0.01)} = \frac{1}{0.01} = 100 \text{ bosluls}$ or it could be find using the surpli 6=2 y=2x+2. $C_{v} = 0.01 (100)^{2} - 2/100) + 120$ = 20 \$ / booket

$$\begin{array}{c} (4) & \frac{t}{0} & \frac{P(t)}{0} & \frac{-7-}{100} \\ a) & 1 & 3(100) & = 300 \\ a & 3^{2}(100) & = 900 \\ 3 & 3^{3}(100) & = 900 \\ 3 & 3^{3}(100) & = 2700 \\ 4 & 3^{4}(100) \\ t & 3^{4}(100) \\ t & 3^{4}(100) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) & (1) & (1) \\ (1) & (1) & (1) \\ (1) & (1) & (1) \\ (1) & (1) & (1) \\ (1) & (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) & (1) \\ (1) & (1) & (1) \\ (1) & (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) & (1) \\ (1) & (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1) & (1) \\ (1) & (1) \\ \end{array}$$

$$\begin{array}{c} (1)$$

(5) $f(x) = 574(1.026)^{x}$ X = # yeors after 1974 fix) = population (in millions) a) x=0, f(0)=574 millim hi 1974, The population Nos 574 million b) $f(27) = 574(1.026)^{2}$ ~ 1147. 86 willin In 2001, the population was 1147. 86 millim c $2028 \quad x = 2028 - 1974$ $X = 57 \quad 54$ f154/= 574(1.026) ≈ 2295 millin \rightarrow t a) x=? if f(x)= 1000 will n 574 (1.026) × 1000 $(1.026)^{\times} = \frac{7000}{574}$ lu (1.026) × = lu (1006) 574, x ln 1.026 = ln (1000) 574) un (574) 221.64cors $X = lu\left(\frac{1000}{57y}\right)$ The population readus 1000 million in about al.6 years