## Review Test 2 <br> Chapters 3, 4, and 5

Review of the definitions, theorems, and properties learned. Answer the following questions. Make a drawing for each situation. Then translate the statements mathematically.

## TRIANGLES

1. When are two triangles congruent?
$\qquad$
$\qquad$
$\qquad$
2. What special case of congruency do you know in the case of two right triangles?
3. A triangle is isosceles if and only if $\qquad$ .
4. A triangle is isosceles if and only if $\qquad$ _.
5. A triangle is equilateral if and only if $\qquad$ .
6. A triangle is equilateral if and only if $\qquad$ .
7. The measure of an exterior angle of a triangle is equal to $\qquad$ -
8. The sum of the measures of the angles of a triangle is $\qquad$ .
9. If two sides of a triangle are congruent, then the angles opposite them are $\qquad$
10. Given a line and a point not on the line, the $\qquad$ is the shortest segment that can be drawn from the point to the line.
11. The segment that joins the midpoints of two sides of a triangle is $\qquad$ to the third side and its length is $\qquad$ .
12. An angle bisector of a triangle is $\qquad$ .
13. A median of a triangle is $\qquad$ .
14. An altitude of a triangle is $\qquad$ .
15. A perpendicular bisector of a side of a triangle is $\qquad$ .
16. If a line parallel to one side of a triangle intersects the other two sides in different points, then:
a) two $\qquad$ triangles are formed.
b) The line divides the sides in $\qquad$ .
17. When are two triangles similar?
18. What is the Pythagorean theorem? $\qquad$ .

The triangle must be $\qquad$ .
19. What is the converse of the Pythagorean theorem? Is it true?
20. What do you know about the altitude to the hypotenuse in a right triangle?
a) The altitude divides the right triangle into two $\qquad$ triangles. Each of these two triangle is also similar to $\qquad$ .
b) The altitude is the geometric mean of $\qquad$ .
c) One leg is the geometric mean of $\qquad$
21. In a right triangle, a leg opposes a 30 degree angle if and only if its length is $\qquad$ of the length of the $\qquad$ _.
22. The median from the right angle in a right triangle is $\qquad$ .
23. In a triangle, the bisector of one angle divides the opposite side into segments that are $\qquad$ to the $\qquad$ .

## PARALLEL LINES / PARALLEL LINES CUT BY TRANSVERSALS

1. If three or more parallel lines cut congruent segments on one transversal, then they cut $\qquad$ on every transversal.
2. Two lines are parallel if they lie in the same $\qquad$ and do not $\qquad$ .
3. Given two lines with one transversal, then two lines are parallel if and only if
a) One pair of $\qquad$ are congruent.
or
b) One pair of ___ are congruent.
or
c) One pair of $\qquad$ are congruent.
or
d) One pair of same-side interior angles are $\qquad$ .
or
e) One pair of same-side exterior angles are $\qquad$ .
4. If two coplanar lines are perpendicular to a third line, then they are $\qquad$ to each other.

## QUADRILATERALS

In a parallelogram,

1- the opposite sides are $\qquad$ and $\qquad$ .
and
2- the opposite angles are $\qquad$ .
and

3- the diagonals are not $\qquad$ ; they are not $\qquad$ ;
they $\qquad$ each other.
and

4- the sum of the measures of the angles is $\qquad$ .
5. A quadrilateral is a parallelogram if :
a) two opposite sides are $\qquad$ and $\qquad$ .
or
b) both pairs of opposite angles are $\qquad$ .
or
c) diagonals $\qquad$ each other.

In a rectangle,

6- the opposite sides are $\qquad$ and $\qquad$ .
and
7- all angles are $\qquad$ , each $\qquad$ .
and

8- the diagonals are $\qquad$ ; they are not $\qquad$ ; they $\qquad$ each other.
and

9 - the sum of the measures of the angles is $\qquad$ .

In a square,

10- the opposite sides are $\qquad$ and all sides are $\qquad$ .
and
11- all angles are $\qquad$ , each $\qquad$ .
and

12- the diagonals are $\qquad$ ; they are $\qquad$ ; they $\qquad$ each other.
and
13- the sum of the measures of the angles is $\qquad$ .

In a rhombus,

14- the opposite sides are $\qquad$ and $\qquad$ .
and
15- the opposite angles are $\qquad$ .
and

16- the diagonals are not $\qquad$ ; they are $\qquad$ ; they $\qquad$ each other.
and

17- the sum of the measures of the angles is $\qquad$ .

In a trapezoid,

18- one pair of opposite sides are $\qquad$ , but not $\qquad$ .
and

19- the diagonals are not $\qquad$ ; they are not $\qquad$ ; they do not $\qquad$ each other.
and

20- the sum of the measures of the angles is $\qquad$ .

21- the median is the segment joining the $\qquad$ .
and it is $\qquad$ to the bases and its length is equal to $\qquad$

In an isosceles trapezoid,

22- the unparallel sides also known as $\qquad$ are $\qquad$
and
23- the base angles are $\qquad$ .
and
24- the diagonals are $\qquad$ ; they $\qquad$ bisect each other.
25. A trapezoid is isosceles if:
a) $\qquad$ are congruent
or
b) $\qquad$ are congruent.

## Answers: TRIANGLES

1. SAS, SSS, ASA, AAS 2. HL
2. it has two congruent sides 4. it has two congruent angles
3. it has all three sides congruent
4. it has all three angles congruent ( each of measure 60 degrees)
5. the sum of the measures of the two nonadjacent interior angles of the triangle 8.180 degrees
6. congruent 10. perpendicular segment from the point to the line 11. parallel; half of the third side 12. the bisector of an angle of the triangle 13. the segment that joins one vertex with the midpoint of the opposite side 14. the line segment from one vertex perpendicular to the opposite side (or its extension) 15. the line that is perpendicular to the side at the midpoint 16. similar; equal ratios 17. AA 18. $a^{2}+b^{2}=c^{2}$, where a and b are legs, and c is hypotenuse; a right triangle
7. If $a^{2}+b^{2}=c^{2}$, then the triangle is right, with $\mathrm{c}=$ hypotenuse; yes $\quad 20 \mathrm{a}$. similar ; the given triangle 20b. the segments formed on the hypotenuse 20c. the hypotenuse and the adjacent segment on the hypotenuse 21. half; hypotenuse 22. one-half the length of the hypotenuse

Answer: PARALLEL LINES CUT BY TRANSVERSALS

1. congruent segments 2. plane; intersect 3a. corresponding angles 3b. alternate interior angles

3c. alternate exterior angles
3 d . supplementary 3 e . supplementary
4. parallel

Answer: QUADRILATERALS

| 1. parallel; congruent | 2. congruent |  | 3. congruent; perpendicular; bisect | 4. 360 degrees |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5a. parallel; congruent | 5b. congruent | 5c. bisect each other | 6. parallel; congruent |  |
| 7. congruent; 90 degrees | 8. congruent; perpendicular; bisect | 9.360 degrees | 10. parallel; |  |
| congruent | 11. congruent; 90 degrees | 12. congruent; perpendicular; bisect | 13.360 degrees |  |
| 14. parallel; congruent 15. congruent 16. congruent; perpendicular; bisect 17.360  <br> 18. parallel; congruent 19. congruent; perpendicular; bisect 20.360 degrees   <br> 21. midpoints of the unparallel sides; parallel; half of the sum of the bases 22. legs; congruent 23.   <br> congruent 24. congruent; do not 25a. diagonals 25b. two base angles  |  |  |  |  |

## Review the following problems:

Handout Sections 3.1
Handout Section 4.4
Quiz \#2
Textbook 3.1
Textbook 3.2
Textbook 3.3
Textbook 3.4
Textbook 4.1
Textbook 4.3
Textbook 4.4
Textbook 5.2
Textbook 5.3
Textbook 5.4

Problems 4, 5, 6
Problems 1,2,3,4
All
\# 15 (same as 6 on handout 3.1), 16
\# 1 - 9, 15, 27, 39
\# 28
\# 1, 3, 5, 7, 13, 14, 15, 16, 19
\# 24, 25, 26, 29
\# 26, 27
\# 21, 24, 27, 29, 31
\# 25, 27, 31,33, 36, 37
\# 1, 4, 7, 10, 11, 14, 20, 23, 26
\# 16, 19, 26, 28, 31, 45, 47

## Know the formal proofs of the following theorems:

Handout Section 3.1 Theorems: T 3.1

Section 3.3
T 3.11, C 3.14
Handout Section 4.1
Theorems: T 4.1, T 4.4, T4.5, T4.7, T4.8
Section $4.2 \quad$ Theorem 4.10, T4.11
Handout Section 4.4 Theorems: T 4.20, T4.21
Section 5.2
Theorem 5.11

## Answer true or false:

1) The hypotenuse is the side opposite one of the acute angles in a right triangle.
2) An isosceles triangle can have an obtuse angle as one of its angles.
3) A right isosceles triangle has two right angles.
4) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
5) Triangles can be proved congruent using SSA. $\qquad$
6) Corresponding parts of congruent triangles are congruent.
7) The median to the base of an isosceles triangle bisects the vertex angle.
8) An exterior angle of a triangle is the supplement of one of the interior angles of the triangle.
9) If two angles of one triangle are congruent to two angles of a second triangle, the third angles are not necessarily congruent. $\qquad$
10) If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other line also.
11) If two angles of a quadrilateral are right angles, the quadrilateral is a rectangle. $\qquad$
12) A parallelogram is also a trapezoid. $\qquad$
13) In a trapezoid, two sides are always parallel. $\qquad$
14) If the four sides of a quadrilateral are congruent, it must be a square. $\qquad$
15) In a parallelogram, the diagonals bisect the angles. $\qquad$
16) In a rhombus, the diagonals bisect the angles.
17) Two congruent triangles are also similar.
18) Two similar triangles are also congruent.
19) If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
20) If an acute angle of a right triangle is congruent to an acute angle of a second right triangle, then the two triangles are similar.
21) A line through two sides of a triangle parallel to the third side divides the two sides proportionally.
22) If the three sides of one triangle are parallel, respectively, to three sides of a second triangle, then the triangles are similar.
23) Two right triangles are always similar triangles.
24) The altitude to the hypotenuse of a right triangle forms two triangles that are similar.
25) If the hypotenuse of an isosceles right triangle measures $8 \sqrt{2}$ inches, then each leg is 8 inches long.
26) The three sides of a right triangle could measure 9,40 , and 42 inches. $\qquad$
(Answers: 1F, 2T, 3F, 4F, 5F, 6T, 7T, 9T, 10F, 11T, 12F, 13F, 14T, 15F, 16F, 17T, 18T, 19F, 20T, 21T, 22T, 23T, 24F, 25T, 26T, 27F)

## More practice

1. Which lines are parallel if
a) $\angle 1 \cong \angle 3$ ?
b) $\angle 3 \cong \angle 8$

2. Given: $\overline{X Y} \| \overline{W Z}$ $\angle 1 \cong \angle 2$

Prove: $\overline{M N} \| \overline{X Y}$ (formal proof)

3.

Given $\overline{A B}$ bisects $\overline{C D}$
$\overline{C D}$ bisects $\overline{A B}$

Prove $\triangle A O C \cong \triangle B O D$ (formal proof)
4.


Given | $\overline{I U} \perp \overline{E C}$ |
| :--- |
|  |
|  |
|  |
| $\overline{C L} \cong \overline{I C}$ |

Prove $\triangle E C L \cong \triangle I C U$
(formal proof)
5.


If $\angle R$ and $\angle V$ are right angles and $\angle 1 \cong \angle 2$, prove that $\triangle R S T \cong \triangle V S T$. (formal proof)
6. In a right triangle $F D G$ with right angle $D$, the bisector of angle $D$ intersects the hypotenuse at $E$. The acute angles of the triangle are congruent. Prove that $E$ is the midpoint of the hypotenuse.

7


$$
\begin{array}{ll}
\text { Given } & \angle 1 \cong \angle 2 \\
& \overline{M N} \cong \overline{Q P} \\
\text { Prove } & \overline{M Q} \| \overline{N P}
\end{array}
$$

(formal proof)
8.

Given $\angle A B C \cong \angle A C B$
$\overrightarrow{B N}$ bis $\angle A B C$
$\overrightarrow{C M}$ bis $\angle A C B$

Prove $\quad \triangle B M C \cong \triangle C N B$

## (formal proof)

9. (3.3-\#18) In an isosceles triangle ABC (base $\overline{B C}$ ), $m \angle B=68^{\circ}$. If the angle bisectors of angles B and C intersect at O , find the measure of the angle BOC. Find the measure of the angle formed by the angle bisectors of $\angle B$ and $\angle C$.
10. Given: RSTV trapezoid

$$
\begin{aligned}
& \overline{R V} \| \overline{S T} \\
& m \angle S R V=90^{\circ} \\
& \mathrm{M}, \mathrm{~N} \text { midpoints } \\
& \mathrm{ST}=13 \text { in, } \mathrm{RV}=17 \mathrm{in}, \mathrm{RS}=16 \mathrm{in}
\end{aligned}
$$

Find: RN.


