QUIZ \#1 @ 85 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Solve the following equations:
a) $x^{2}=5 x$
b) $(2 t-1)^{2}=9$
c) $2 p^{2}-3 b=-1$
d) $x^{3}+4 x^{2}-9 x-36=0$
e) $x^{4}-10 x^{2}+9=0$
2. Find the remaining sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ if the side opposite 60° is 8 .
3. Draw an angle of 45° in standard position.
a) Find a point on the terminal side of the angle .
b) Find the distance from the origin to that point.
c) Find two other angles that are coterminal with the given angle, one positive and one negative.

Mark them on the drawing.
4. Find the remaining functions of θ if $\sin \theta=\frac{4}{7}$ and θ terminates in quadrant II.
5. Make a drawing and indicate the quadrants in which the terminal side of θ must lie in order that
a) $\cos \theta<0$
b) $\sin \theta>0$
c) $\tan \theta<0$

Math 150
(1)
(a)

$$
\begin{gathered}
x^{2}=5 x \\
x^{2}-5 x=0 \\
x(x-5)=0
\end{gathered}
$$

$x=0$ OR $x-5=0$ $x=5$

$$
x \in\{0,5\}
$$

(b)

$$
\begin{aligned}
& (2 t-1)^{2}=9 \\
& \sqrt{12 t-1)^{2}}=\sqrt{9} \\
& 2 t-1= \pm 3 \\
& 2 t=1 \pm 3
\end{aligned}
$$

$2 t=4$ or $2 t=-2$ $t=-1$
$t=2$

$$
t \in\{2,-i\}
$$

(c)

$$
\begin{aligned}
& \text { (c) } 2 p^{2}-3 p=-1 \\
& 2 p^{2}-3 p+1=0 \\
& p=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad\left\{\begin{array}{l}
a=2 \\
b=-3 \\
c=1
\end{array}\right. \\
& p=\frac{3 \pm \sqrt{9-4(2)(1)}}{2(2)}=\frac{3 \pm 1}{4} \\
& p=1 \text { on } p=\frac{1}{2} \\
& p \in\left\{1, \frac{1}{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } x^{3}+4 x^{2}-9 x-36=0 \\
& x^{2}(x+4)-9(x+4)=0 \\
& (x+4)\left(x^{2}-9\right)=0 \\
& (x+4)(x-3)(x+3)=0 \\
& x+4=0 \text { OR } x-3=0 \text { or } x+3=0 \\
& x=-4 \quad x=3 \\
& x \in\{-4,-3,3\}
\end{aligned}
$$

(e) $x^{4}-10 x^{2}+9=0$
let $x^{2}=t$
then $x^{4}=t^{2}$
then the equatin thecomes

$$
\begin{array}{ll}
t^{2}-10 t+9=0 & \\
(t-9)(t-1)=0 & t=1 \\
t=9 & x^{2}=1 \\
x^{2}=9 & x= \pm 1 \\
x= \pm 3 & x \in\{-1,1,-3,3\}
\end{array}
$$

(2)

$$
C=30^{\circ} \text { (os it }
$$

opposes the numeler lig

$$
B=60^{\circ} \text { cas it }
$$

opporos the loger leg
so, $A C=8$ (given)
We kuon that wi a nisht Δ, the side, that opposs the 30° sugen is hoeflof the mypotenner te

$$
A B=\frac{1}{2} B C
$$

Let $A B=x$, then $B C=2 x$ $\triangle A B C$: Py thogorean theosme

$$
\begin{aligned}
& A B^{2}+A C^{2}=B C^{2} \\
& x^{2}+8^{2}=(2 x)^{2} \\
& x^{2}+64=4 x^{2} \\
& 3 x^{2}=64 \\
& x^{2}=\frac{64}{3} \Rightarrow x=\frac{8}{\sqrt{3}}=\frac{8 \sqrt{3}}{3} \\
& A B=\frac{8 \sqrt{3}}{3} \\
& B C=\frac{16 \sqrt{3}}{3}
\end{aligned}
$$

(3)

a) $\theta=y 5^{\circ} \Rightarrow$ the tencuind side of θ is on the biouctbr line $y=x$ Let $P(1,1) \mid$
(or, het $P(x, y)$ on tenciual side sud \triangle PQO is a $45^{\circ}-45^{\circ}-90^{\circ}$)
b) $\triangle O P Q:$ Pythogoran th:

$$
\begin{aligned}
& \quad(O Q)^{2}+(Q P)^{2}=(O P)^{2} \\
& 1^{2}+1^{2}=(O P)^{2} \\
& O P=\sqrt{2}
\end{aligned}
$$

C) cotenuinal serges aith θ :

$$
\left.\begin{array}{l}
\alpha=-315^{\circ} \tag{4}\\
\beta=405^{\circ}
\end{array}\right)\left(\begin{array}{c}
-\left(360^{\circ}-45^{\circ}\right) \\
\left(360^{\circ}+45^{\circ}\right)
\end{array}\right.
$$

Lat (x, y) a point on the terminal side of θ

$$
\text { sor } \left.\sin \theta=\frac{4}{7} \begin{array}{r}
y \\
\sin \theta
\end{array}\right\} \begin{aligned}
& \text { set } \\
& y=4 \\
& r=7
\end{aligned}
$$

$\triangle A O B$: Pythosorean theoten

$$
\begin{aligned}
& x^{2}+4^{2}=7^{2} \\
& x^{2}=33 \Rightarrow x= \pm \sqrt{33}
\end{aligned}
$$

but $(x, y) \in$ II
so $x=-\sqrt{33}$
Then, $\cos \theta=\frac{x}{r}=\frac{-\sqrt{33}}{7}$
$\tan \theta=\frac{y}{x}=-\frac{4}{-\sqrt{33}}=-\frac{4 \sqrt{33}}{33}$
$\cot \theta=\frac{1}{\tan \theta}=\frac{-\sqrt{33}}{4}$
$\csc \theta=\frac{1}{\sin \theta}=\frac{7}{4}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{-7}{\sqrt{33}}=\frac{-7 \sqrt{33}}{33}$
(5) (a)

$$
\begin{aligned}
& \cos \theta<0 \\
& \cos \theta=\frac{x}{r}<0 \text { iff } x<0 \\
& r>0
\end{aligned}
$$

Thesefor, $\theta \in$ II or III

(b) $\sin \theta>0$

$$
\sin \theta=\frac{x}{r}>0 \text { iff } x>0
$$

$$
r>0
$$

Therefor, $\theta \in$ I or III

(c) $\tan \theta<0$ $\tan \theta=\frac{y}{x}<0$ iff x and y have opposite sigus Therefore, $\theta \in$ II or IV

