TEST \#2 @ 150 points

Write neatly. Show all work. Write all responses on separate paper. Clearly label the exercises.

1. Consider the polynomial function

$$
f(x)=2 x^{4}-19 x^{3}+57 x^{2}-64 x+20 .
$$

Questions $a-g$ below relate to this polynomial function.
You may use the given grid to graph. Write all the answers and show ALL your work on separate paper.
a) Describe the long-term behavior of this function; that is, what happens as $|x| \rightarrow \infty$.
b) Compute and compare the values of $f(0)$ and $f(1)$. What can you conclude using the Intermediate value theorem?
c) Using Descartes' rule of signs, determine the number of positive real zeros and the number of negative real zeros for $f(x)$.
d) State why the condition for the theorem on rational zeros is satisfied and use the theorem on rational zeros to list possible rational zeros.
e) Find all the real zeros of $f(x)$ and factor $f(x)$.
f) What are the intercepts of the graph of $f(x)$? Write each intercept as an ordered pair.
g) Sketch a graph of $f(x)$ showing how it passes through its intercepts. Plot additional points, as necessary, to get the shape of the graph. Clearly label all the points.

2. Consider $f(x)=\frac{3 x}{x^{2}-x-2}$.

Questions $a-e$ below relate to this polynomial function.
You may use the given grid to graph. Write all the answers and show ALL your work on separate paper.
a) Factor the denominator.
b) What is the domain of the function?
c) What are the vertical asymptotes?
d) What is the horizontal asymptote?
e) What are the intercepts for this function? Write them as ordered pairs.
e) Plot additional points, as necessary, to get the shape of this function and sketch a graph.

3. Let $f(x)=1+\log _{2}(x-1)$.
a) Graph the function (using table of values or transformations). Clearly show how you're obtaining the graph. If you choose transformations, show all equations and their meaning.
b) State the domain, range, and vertical asymptote.
c) Find the exact x - and y-intercepts (if any).
d) Does the function have an inverse? Explain.
e) Graph the inverse $f^{-1}(x)$ showing the symmetry through $y=x$.
f) State the domain, range, and horizontal asymptote for the inverse function $f^{-1}(x)$.

4. Solve the following equations. Give exact answer(s).
a) $2^{x^{2}-2 x}=8$
b) $2^{x}=3^{3 x-2}$
c) $\log _{3}(x+5)-\log _{3} 2=1$
d) Solve for $t: r=p-k \ln t$
5. State whether each statement is TRUE or FALSE. DO NOT prove.
a) $\log (a b)=\log a+\log b$
b) $\log \left(\frac{a}{b}\right) \neq \frac{\log a}{\log b}$
c) $\log 3 x^{2} \neq 2 \log 3 x$
d) $\log (x y)=(\log x)(\log y)$
6. Revenues in the United States from all forms of legal gambling increased between 1991 and 1995. The function represented by

$$
f(x)=26.6 e^{0.131 x}
$$

models these revenues in billions of dollars x years after 1991.
a) What was the revenue in 1991?
b) Estimate gambling revenues in 1995.
c) Determine the year when these revenues reached $\$ 30$ billion (round to the nearest whole number).
7. A group of agricultural scientists has been studying how the growth of a particular type of bacteria is affected by the acidity level of the soil. One colony of the bacteria is placed in a soil that is slightly acidic. A second colony of the same size is placed in a neutral soil. Suppose that after analyzing the data, the scientists determine that the size of each population over time can be modeled by the following functions.

Colony of neutral soil: $\quad y=\frac{2 t+1}{t+1}, t \geq 0 \quad$ Colony of acidic soil: $\quad y=\frac{4 t+3}{t^{2}+3}, t \geq 0$
In both cases, y represents the population, in thousands, after t hours.
a) What is the initial population for each colony?
b) Determine the long-term behavior of each colony.

TET2- towAORES
(1) $f(x)=2 x^{4}-\frac{19 x^{3}}{2}+57 y^{2}-64 x+20$ Possitue rational teros:
(a) The long-term be havior is siven by the hoding te m $2 x^{*}$

$$
\begin{gathered}
\frac{p}{q} \in\left\{\begin{array}{l}
\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 \\
\left. \pm \frac{1}{2} \pm \frac{5}{2}\right\}
\end{array}\right. \text {, }
\end{gathered}
$$

whon $x \rightarrow \infty, y \rightarrow \infty$

$$
x \rightarrow-\infty, \quad y \rightarrow \infty
$$

(b)

$$
\begin{aligned}
& f(0)=20>0 \\
& f(1)=2-19+57-64+20 \\
& f(1)=-4<0
\end{aligned}
$$

गumefor, according to the internediate Calue theorm, there is $c \in(0,1)$ such thot $f(c)=0$
(c) There are 4 voriations of sign in $f(x)$, ∞ then su 4 or 2 ar 0 positine seal tenos.

$$
f(-x)=2 x^{4}+19 x^{3}+57 x^{2}+64 x+20
$$

There is no voriati is ui tign wi $f(-x)$, to then is no negative ral fes.
(d) Al coefficients su integers, ∞ we can opply the Rationse teros therom possible rational teros:

$$
\begin{aligned}
\frac{p}{q} & =\frac{\text { focton of } 20}{\text { footon } 72} \\
& =\frac{ \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20}{ \pm 1, \pm 2}
\end{aligned}
$$

(e)
2-19
2
:---:
10

$$
f(x)=(x-2)\left(2 x^{3}-15 x^{2}+27 x-10\right)
$$

$$
\text { Facker } 2 x^{3}-15 x^{2}+27 x-10
$$

$$
p_{q}=\frac{ \pm 1, \pm 2, \pm 5, \pm 10}{ \pm 1, \pm 2}
$$

	2	-15	27	-10
5	2	-5	2	0

$$
f(x)=(x-2)(x-5)\left(2 x^{2}-5 x+2\right)
$$

$$
\begin{aligned}
& 2 x^{2}-5 x+2=0 \\
& x=\frac{-5 \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{5 \pm \sqrt{25-16}}{2(2)} \\
& =\frac{5 \pm 3}{4} \quad \begin{array}{c}
x=2 \\
\text { on } \\
x=\frac{1}{2}
\end{array}
\end{aligned}
$$

$$
f(x)=(x-2)(x-5) 2(x-2)\left(x-\frac{1}{2}\right)
$$

$$
f(x)=(x-2)^{2}(x-5)(2 x-1)
$$

fation form
The ters of $f(x)$ sue

$$
x=2, \quad x=5, \quad x=\frac{1}{2}
$$

(f) x-n: $(2,0),(5,0),\left(\frac{1}{2}, 0\right)$

$$
y-n: \quad x=0, y=20
$$

(9)

Test point
Tat points \qquad

$$
\begin{aligned}
& x=-\frac{1}{2}, f\left(\frac{-1}{2}\right)=\frac{-\frac{3}{2}}{-\frac{5}{x} \cdot \frac{1}{2}}=\frac{6}{5} \\
& x=1, f(1)=\frac{3}{-1(2)}=\frac{-3}{2} \\
& x=3, f(3)=\frac{9}{1(4)}=\frac{9}{4}
\end{aligned}
$$

(2) $f(x)=\frac{3 x}{x^{2}-x-2}$
(a) $f(x)=\frac{3 x}{(x-2)(x+1)}$
(3) $f(x)=1+\log _{2}(x-1)$

1st: $\mid y=\log _{2} x \quad x>0$, VA $x=0$
and $y=\log (x-1) \quad$ sluft nignt
(b) $x \in \mathbb{R} \backslash\{2,-1\}$
and $y=\log _{2}(x-1) \quad$ sluift nignt
(c) $V \cdot A, x=2, x=-1$

3rd $y=\log _{2}(x-1)+1$ slift up
(d) H.A $y=0$
(e) $\begin{array}{rr}x-n: & x=0, y=0 \\ y-n: & (0,0)\end{array}$

Groph $y=\log _{2} x$

$$
\left.y\right|_{-\infty} ^{x} 0 \quad 1 \quad 2 \quad \infty
$$

(b) Domain: $x \in(1, \infty)$

Rauge: $j \in \mathbb{R}$
V.A. $\quad x=1$
(c)

$$
\begin{aligned}
& x-n: \text { at } y=0 \\
& 1+\log _{2}(x-1)=0 \\
& \log _{2}(x-1)=-1 \\
& x-1=2^{-1} \\
& x=1+\frac{1}{2}=\frac{3}{2} \quad x-n:\left(\frac{3}{2} ; 0\right)
\end{aligned}
$$

$y-n: x>1$ so no $y-n$
(1) yes, $y=f(x)$ hes on wirese becouse it is a one-to-one functin
(its groph passes the $H L T$)
(f) $y=f^{-1}(x)$

Domain: $x \in \mathbb{R}$
Rause: $y \in(1, \infty)$
H.A. $\quad y=1$

(4) (a)

$$
\begin{aligned}
& 2^{x^{2}-2 x}=8 \\
& 2^{x^{2}-2 x}=2^{3} \quad \text { iff }
\end{aligned}
$$

$$
x^{2}-2 x=3
$$

$$
x^{2}-2 x-3=0
$$

$$
x-3=0, x=3
$$

$$
(x-3)(x+1)=0
$$

on

$$
x+1=0, x=-1
$$

$$
x \in\{3,-1\}
$$

$$
\begin{aligned}
& \text { (b) } 2^{x}=3^{3 x-2} \quad / \ln \\
& \ln 2^{x}=\ln 3^{3 x-2} \\
& x \ln 2=(x-2) \ln 3 \\
& x \ln 2=3 x \ln 3-2 \ln 3 \\
& 2 \ln 3=3 x \ln 3-x \ln 2 \\
& 2 \ln 3=x(3 \ln 3-\ln 2) \\
& \ln 3^{2}=x\left(\ln 3^{3}-\ln 2\right)
\end{aligned}
$$

$$
x=\frac{\ln 9}{\ln 27-\ln 2}
$$

$$
x=\frac{\ln 9}{\ln \frac{27}{2}}
$$

(c) $\log _{3}(x+5)-\log _{3} 2=1$

Condition: $\begin{aligned} & x+5>0 \\ & x>-5\end{aligned}$

$$
\begin{aligned}
& \log _{3} \frac{x+5}{2}=1 \quad 17 f \\
& \frac{x+5}{2}=3 \\
& x+5=6 \\
& x=1
\end{aligned}
$$

(d)

$$
\begin{aligned}
& r=p-k \ln t \\
& k \ln t=p-r \\
& \ln t=\frac{p-r}{k} \\
& t=\left.e^{\frac{p-r}{k}}\right|^{k}
\end{aligned}
$$

(5) (a) $\log (a b)=\log a+\log b$ TRUE
(b) $\log \left(\frac{a}{b}\right) \neq \frac{\log a}{\log b}$

т~е́

$$
\left(\log \left(\frac{a}{b}\right)=\log a-\log b\right)
$$

(c) $\log 3 x^{2} \neq 2 \log 3 x$ trut

$$
\left(\log 3 x^{2}=\log 3+2 \log x\right)
$$

(d) $\log (x y)=(\log x)(\log b)$

$$
\begin{aligned}
& \text { (d) } \log (x y)=(\log x)(\log \\
& (\cos x y=\log x+\log y)
\end{aligned}
$$

(6) $f(x)=26.6 e^{0.131 x}$
$x=\#$ yeos after 1991
$f(x)=$ revenues (ni Liline $\$$)
(a) $f(0)=26.6 e^{0}=26.6$ silline \$
The revenues wi 199/ was 26.6 billine $\$$.
(b)

$$
\begin{aligned}
f(4) & =26.6 e^{0.131(4)} \\
& \approx 44.9 \text { billixe } \$ 1 \\
& 1995 \text { wos }
\end{aligned}
$$

The revennes ii 1995 wos abont 44.9 billise $\$$.
(c) $x=$? when $f(x)=30$

$$
\text { (c) } x=6 e^{0.13 / x}=30
$$

$$
e^{26.6 e}=\frac{30}{26.6} / \ln
$$

$\ln e^{0.131 x}=\ln \frac{30}{26.6}$
$0.131 x=\ln \frac{30}{26.6}$

$$
\begin{aligned}
& x=\frac{\ln \frac{30}{x \cdot 6}}{0.131} \approx 0.91 \\
& x \approx 1
\end{aligned}
$$

The reverues were 30 biline of aquoximately ii 1992.
$-5-$
(7) hental soil:

$$
y=\frac{2 t+1}{t+1}, t \geqslant 0
$$

$$
\text { acidic soil: } \quad y=\frac{4 t+3}{t^{2}+3}, t \geqslant 0
$$

$t=\#$ hous
$y=$ population (ni Hhousonds)
(a) $t=0, y_{0}=1$ (wutsol tril),
$t=0, y_{0}=1$ (acidic toil)
For both, the initial popalation was 1000 bacteria
(b) Loug-teun belearis - when $t \rightarrow \infty, y=$?

The horifutal anpuptote of the nentral soil colory furction is $y=\frac{2}{1}=2 \quad y=2$

When $t \rightarrow \infty, y \rightarrow 2$
Therefor, oxer time, tue nentral toil colony approctes 2000 socteria
The to igretal asymptote of the acidic wil colocy function is $\begin{aligned} y & =0 \\ & \rightarrow \rightarrow\end{aligned}$
Thenfore, wheu $t \rightarrow \infty, y \rightarrow 0$
so fent population hecomes extinct.

