TEST \#1 @ 150 points

Write neatly. Show all work. Write all responses on separate paper. Clearly label the exercises.

1. A piecewise-defined function is given.

$$
f(x)= \begin{cases}x-2 & \text { if } \quad x<-1 \\ 2 x & \text { if } \quad-1 \leq x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}
$$

You may use the above grid to graph. Write all the answers and show ALL your work on separate paper.
a) Sketch a graph for the function. Clearly show how you obtain the points you are using for the graph. Label the axes and all points used.
b) State its domain and range in interval notation.
c) On what interval(s) is the function increasing, decreasing, constant?
d) Find $f(-3), f(0)$, and $f(3)$.
e) Locate the x-and y-intercepts (if any). Write each intercept as an ordered pair.
f) Find the values of $f(f(1))$ and $(f \circ f)(-2)$.
2. Let $A(2,-1)$ and $B(-3,1)$ be two points in a plane.
a) Find an equation of the circle with diameter $A B$ (note that the diameter is twice the radius). Show how you obtain the equation.
b) Does the equation from (a) represent y as a function of x ? Explain.
c) Find the exact x - and y-intercepts (if any).
d) Find the equation of the line that passes through the two given points.
e) Does the equation from (d) represent y as a function of x ? Explain.
3. Solve the following equations in the set of complex numbers:
a) $\left(t-\frac{1}{2}\right)^{2}=\frac{3}{4}$
b) $\frac{1}{2} a^{2}-3=-\frac{1}{4} a$
c) $x^{3}+27=0$
d) $2 x^{4}-7 x^{2}+5=0$
4. Let $f(x)=4 x^{2}+2 x+8$ and $g(x)=x^{2}+5$ two functions. Do the following.
a) Find $f(x+2)$.
b) Find $g(-2 x)$
c) Find $(f \circ g)(x)$
d) Find $(f-g)(x)$.
e) Determine (algebraically) whether g has a graph that is symmetric with respect to the x-axis, the y-axis, the origin, or none of these. Show all work.
f) Determine (algebraically) whether f is even, odd, or neither.
5. Graph the following function using transformations. You may use the grid to graph Clearly show all the steps: the equations and their meaning on separate paper. Graph all steps.

$$
f(x)=2 \sqrt{x-1}+3
$$

6. Using the graph $y=f(x)$ shown, answer the following:

a) Is y a function of x ? Explain.
b) Find the domain and range of f.
c) List the x - and y-intercepts (as ordered pairs).
d) Find $f(-2)$.
e) For what values of x does $f(x)=-2$
f) Solve $f(x)>0$.
g) Find $(f \circ f)(3)$.
h) Graph $y=f(x)+1$

Extra Credit

The function $H(t)$ shown gives the heating schedule of an office building during the winter months. $H(t)$ is the building's temperature in degrees Fahrenheit t hours after midnight.
a) If the company decides to schedule its heating according to the function $H(t)-2$, what has it decided to do?
b) If the company decides to schedule its heating according to the function $H(t-2)$, what has it decided to do?

Math 130
TEET \# 1 - LOWTIONS
(1) $f(x)= \begin{cases}x-2, & x<-1 \\ 2 x, & -1 \leq x<1 \\ x^{2}, & x \geqslant 1\end{cases}$

$$
\text { (d) } \begin{aligned}
f(-3) & =-3-2
\end{aligned}=-50 \text { (0) }=2(0)=0
$$

(a) (o) $y=x-2$ when $x<-1$
(2) $y=2 x$
when $-1 \leqslant x<1$

x	z
-1	-3
-2	-4

x	y
-1	-2
1	2

(3) $y=x^{2} \mid$

x	y
1	1
2	4

(b) Domain: $x \in(-\infty, \infty)$

Raugi: $y \in(-\infty,-3) \cup(-2, \infty)$
(c) The functine is micreoting on eung cuterone:
$(-\infty,-1)$
$[-1,1)$

$$
[1,-\infty)
$$

(e) $x-n$ and $y-n:(0,0)$
(f) $f(f(11)=f(1)=1$

$$
\begin{aligned}
&\left(f(1)==^{2}=1\right) \\
&(f \circ f)(-2)=f(f(-2)) \\
&=f(-4)
\end{aligned}
$$

$$
\begin{array}{r}
=-6 \\
\left(\begin{array}{rl}
f(-2) & =-2 \cdot 2 \\
f(-4) & =-4 \\
f(-2 & =-6
\end{array}\right)
\end{array}
$$

(2) $A(2,-1)$

$$
B(-3,1)
$$

(a) eq. circle of center (h, k) feid rodius r

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Cuter = midepint if $A B$

$$
\begin{aligned}
& h=\frac{x_{A}+x_{B}}{2}=\frac{-1}{2} \\
& k=\frac{y_{A}+y_{B}}{2}=\frac{0}{2}=0
\end{aligned}
$$

Couter ($-\frac{1}{2}, 0$)

$$
\begin{aligned}
& r=\frac{A B}{2} \\
& (A B)^{2}=(\Delta x)^{2}+(\Delta y)^{2}
\end{aligned}
$$

$$
\begin{aligned}
(A B)^{2} & =(2-(-3))^{2}+(t-(-1))^{2} \\
& =25+4=29 \\
A B & =\sqrt{29} \Rightarrow r=\frac{\sqrt{29}}{2}
\end{aligned}
$$

The equation is:

$$
\left(x+\frac{1}{2}\right)^{2}+y^{2}=\frac{29}{4}
$$

(b) The above equating dos not represent y as a function of x hocoubt its graph is a circle and it doesn't pass the vortical line test (2 ven an x-value, there are furs y-values
(c)

$$
\begin{aligned}
& x-n: \text { at } y=0 \\
& \left(x+\frac{1}{2}\right)^{2}=\frac{29}{4} \\
& \sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{29}{4}} \\
& x+\frac{1}{2}= \pm \frac{\sqrt{29}}{2} \\
& x=-\frac{1}{2} \pm \frac{\sqrt{29}}{2}
\end{aligned}
$$

The x - Here: $\left(-\frac{1}{2} \pm \frac{\sqrt{24}}{2}, 0\right)$
$y-n$: lit $x=0$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{2}+y^{2}=\frac{29}{4} \\
& y^{2}=\frac{28}{4} \quad y \\
& y^{2}=7
\end{aligned}
$$

(d) $m=\frac{\Delta y}{\Delta x}$
$m=\frac{1-(-1)}{-3-2}=\frac{2}{-5} \quad$ alone
$(2,-1)$ point n line

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+1=-\frac{2}{5}(x-2)
\end{aligned}
$$

(e) y is a function of x rectanse the soph is a descending line, ∞ it descender the nertical line test (porereyx, there is rely ix $y y$

$$
\begin{aligned}
& \text { (3)(a) }\left(t-\frac{1}{2}\right)^{2}=\frac{3}{4} \\
& \sqrt{\left(t-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}} \\
& t-\frac{1}{2}= \pm \frac{\sqrt{3}}{2} \\
& t=\frac{1}{2} \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

(b) $\frac{2}{2} a^{2}-\frac{4}{3}=\frac{-1}{4} a$

$$
\begin{aligned}
& \angle C A=4 \\
& 2 a^{2}-12=-a \\
& 2 a^{2}+a-12=0 \\
& a=\frac{-1 \pm \sqrt{\left.1^{2}-4 / 2\right)(-12)}}{2(2)} \\
& a=\frac{-1 \pm \sqrt{97}}{4}
\end{aligned}
$$

(c)

$$
x^{3}+27=0
$$

$$
\begin{aligned}
& x^{3}+3^{3}=0 \\
& (x+3)\left(x^{2}-3 x+9\right)=0 \\
& x+3=0 \Rightarrow \quad x=-3 \\
& 02 \\
& x^{2}-3 x+9=0 \\
& x=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(9)}}{2(1)}=\frac{3 \pm \sqrt{-3 \cdot 9}}{2} \\
& x=\frac{3 \pm 3 \sqrt{3} i}{2}
\end{aligned}
$$

(d) $2 x^{4}-7 x^{2}+5=0$
at $x^{2}=t$
then $x^{4}=t^{2}$
The equation be comes:

$$
\begin{array}{ll}
2 t^{2}-7 t+5=0 \\
(2 t-5)(t-1)=0 \\
2 t-5=0 & \text { on } \\
t=\frac{5}{2} & t=1 \\
x^{2}=\frac{5}{2} & x^{2}=1 \\
\sqrt{x^{2}}=\sqrt{\frac{5}{2}} & \sqrt{x^{2}}=\sqrt{1} \\
x= \pm \frac{\sqrt{10}}{2} & x= \pm 1
\end{array}
$$

$$
\text { (4) } \begin{aligned}
f(x) & =4 x^{2}+2 x+8 \\
g(x) & =x^{2}+5
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } f(x+2)=4(x+2)^{2}+2(x+2)+8 \\
& =4\left(x^{2}+4 x+4\right)+2 x+4+8 \\
& \left.f(x+2)=4 x^{2}+18 x+28\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& g(-2 x)=(-2 x)^{2}+5 \\
& g(-2 x)=4 x^{2}+5
\end{aligned}
$$

(c) $(f \circ g)(x)=f(g(x))$

$$
\begin{aligned}
& =f\left(x^{2}+5\right) \\
& =4\left(x^{2}+5\right)^{2}+2\left(x^{2}+5\right)+8 \\
& =4\left(x^{4}+10 x^{2}+25\right)+2 x^{2}+10+8
\end{aligned}
$$

$$
(f \circ g)(x)=4 x^{4}+42 x^{2}+118
$$

(d) $(f-g)(x)=f(x)-g(x)$

$$
\begin{array}{r}
=\left(4 x^{2}+2 x+8\right)-\left(x^{2}+5\right) \\
=4 x^{2}+2 x+8-x^{2}-5 \\
(f-g)(x)=3 x^{2}+2 x+3
\end{array}
$$

(c) $g(x)=x^{2}+5$

- chech syumetry about x-axis: $y \mapsto-y$

$$
\begin{aligned}
& -y=x^{2}+5 \\
& y=-x^{2}-5 \\
& e \text { doesn't sinen }
\end{aligned}
$$

The seople doesn' t have symuetry about x-atis

- check symmet y about y - $-4 x$. ${ }^{-4}$. (5) $f(x)=2 \sqrt{x-1}+3$

$$
\begin{aligned}
x \mapsto-x \quad y & =(-x)^{2}+5 \\
y & =x^{2}+5
\end{aligned}
$$

tho Dincu eguotim
The groph has sopumety about the y-axtis

- chech symmetry about onjin.

$$
\begin{array}{ll}
x \mapsto-x & -y= \\
y \mapsto-y & -y=x^{2}+5 \\
& \\
y= & -x^{2}-5 \\
& \neq \text { ginen aq }
\end{array}
$$

The ewph doess't hare. spmurly asont the ougin
(f) $f(x)=4 x^{2}+2 x+8$
f is even iff $f(-x)=f(x)$
f is rad iff $f(-x)=-f(x)$

$$
\begin{gathered}
f(-x)=4(-x)^{2}+2(-x)+8 \\
f(-x)=4 x^{2}-2 x+8 \\
f(-x) \neq f(x)
\end{gathered}
$$

A80, $f(-x) \neq-f(x)$
\mathcal{L} is neithor

1st $y=\sqrt{x}$
and $y=\sqrt{x-1}$ shift presinas gropa rum't rijht
3rd $y=2 \sqrt{x-1}$ virticil stretch of the puerises groph by a froctor of 2
4 th $y=2 \sqrt{x-1}+3$ sluft
quesios gropla 3 umit up

(6) (a) Yos, the srople posses the vertical line test
(b) Domain: $x \in[-6,7]$

Range: $y \in[-2,4]$
(c)

$$
\begin{aligned}
& x-n:(1,0) \text { oud }(5,0) \\
& y-n:(0,1)
\end{aligned}
$$

(d) $f(-2)=3$
(e) $f(x)=-2$ iff $x=3$
(f)

$$
\begin{aligned}
& f(x)>0 \text { iff } \\
& x \in[-6,1) \cup(5,7]
\end{aligned}
$$

(g)

$$
\begin{aligned}
(f \circ f)(3) & =f(f(3)) \\
& =f(-2) \\
& =3
\end{aligned}
$$

(h) $y=f(x)+1$
slult the groph $f f$, nuit up

