QUIZ #1 @ 85 points

Write neatly. Show all work. Write all responses on separate paper. Please write only on one side and clearly label the exercises.

1) Solve the following equation by the zero-factor property (by factoring):	$x^2 - 5x + 6 = 0$
2) Solve the following equation by the square root property. Give exact answers.	$2 - 5(x+1)^2 = 18$
3) Solve the following equation by completing the square. Give exact answers.	$3x^2 - 5x - 1 = 0$
4) Solve the following equation by the quadratic formula. Give exact answers.	$3 - \frac{4}{x} - \frac{2}{x^2} = 0$
5) Solve the following equation. Write any restrictions that might apply.	$\frac{2x-5}{x} = \frac{x-2}{3}$
6) Solve the following equation. Make sure to check the solutions.	$\sqrt{x} - \sqrt{x - 12} = 2$
7) Solve the following inequality. Write the solution set in interval notation.	$x^2 - x - 6 > 0$
8) Solve the following inequality. Write the solution set in interval notation.	$\frac{x+1}{x-4} > 0$

9)
$$f(x) = x^2 - 2x + 5$$
, $g(x) = \frac{2x - 5}{x + 1}$. Find the following:

- a) The domain of f and g.
- b) Find f(-x), f(a+h), and g(2x).
- 10) Suppose $v(t) = -t^2 + 3t$ gives the velocity, in ft/sec, of an object at time t, in seconds.
 - a) Is v a function of t? Explain.
 - b) Which variable is independent and which one is dependent?
 - c) What is v(0) and what does it represent?
 - d) What is v(1) and what does it represent?

Quiz #1- SOLUTIONS

①
$$x^2 - 5x + 6 = 0$$

Solve by foctoring
 $(x-2)(x-3) = 0$

$$X-2=0$$
 OR $X-3=0$
 $X=2$ $X=3$

$$X=2$$
 $X=3$

$$2-5(x-1)^2 = 18$$

$$(x-1)^2 = -\frac{16}{5}$$

$$x-1-\frac{1}{\sqrt{5}}$$

(3) Solve by completing the quox:

$$3x^2 - 5x - 1 = 0$$

$$3x^2 - 5x = 1$$
 /= 3

$$x^{2} - \frac{5}{3}x + \frac{25}{36} = \frac{1}{3} + \frac{25}{36}$$

$$\left(X-\frac{5}{6}\right)^2=\frac{37}{36}$$

$$\sqrt{(x-\frac{5}{2})^2} = \sqrt{\frac{37}{36}}$$

$$x - \frac{5}{6} = \frac{7}{6} \frac{\sqrt{37}}{6}$$

$$X = \frac{5 \pm \sqrt{37}}{6}$$

$$3\chi^{2} - 4\chi - 2 = 0$$

$$(4 + \sqrt{1^{2} - 46})^{6} = 0$$

$$3x^{2}-4x-2=0
x = -6 ± 16^{2}-490
2a
(a=3)
6=-x
c=-2$$

$$X = \frac{4 + \sqrt{16 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{4 \pm \sqrt{40}}{6} = \frac{4 \pm 2\sqrt{10}}{6}$$

$$X = \frac{27\sqrt{10}}{3}$$

(f)
$$\frac{2x-5}{x} = \frac{x-2}{3}$$

condition: $x \neq 0$
 $3(2x-5) = x(x-2)$
 $6x-15 = x^2-2x$
 $x^2-8x+15=0$
 $(x-3)(x-5)=0$
 $x-3=0$ or $x-5=0$
 $x=3$
 $x=5$

(6)
$$\sqrt{x} - \sqrt{x-12} = 2$$

$$\sqrt{x} - 2 = \sqrt{x-12}$$

$$(\sqrt{x} - 2) = (\sqrt{x-12})^{2}$$

$$(\sqrt{x} - 2) = (\sqrt{x-12})^{2}$$

$$x - y\sqrt{x} + 4 = x = 12$$

$$-y/x = -16$$

$$\sqrt{x} = 4$$

$$(\sqrt{x})^{2} = y^{2}$$

$$x = 16$$

$$(\sqrt{x})^{2} = y^{2}$$

$$x = 6$$

$$(\sqrt{x})^{2} = y^{2}$$

$$x = 6$$

$$(\sqrt{x})^{2} = y^{2}$$

$$x = 16$$

$$(\sqrt{x})^{2} = y^{2}$$

$$x = 16$$

$$(\sqrt{x})^{2} = \sqrt{x-12}$$

$$(\sqrt{x})^{2} = \sqrt{x}$$

$$(\sqrt{x})^{2}$$

7) x2-x-6>0 et $y = x^2 - x - 6$ The growth of y=x2-X-6

1) a porasola that opens up ward + X-11: x2- X-6=0 (x-3)(x+2)=0x=3, x=-2There po, x2-x-6>0 XE (-20,-2) 4(3,20) $\left(8\right)\frac{\chi+1}{\chi-4}>0$ X -A -1 4 A X+1 - - - 0 + + + X-4 - - - 1 + + + x+1 + 0 - 1 + $\frac{x+1}{x-y} > 0$ $|x \in (-\infty, -1) \cup (4, \infty)|$

(9)
$$f(x) = x^2 - 2x + 5$$
 (b) $f = \text{uidequident}$
 $g(x) = \frac{2x - 6}{x + 1}$

(a) Domain of $f : |x \in R|$

(b) $f(x) = -0^2 + 3/0$

(c) Domain of $f : |x \in R|$

(d) $f(x) = -1^2 + 3/1$

(e) $f(x) = -1^2 + 3/1$

(f) $f(x) = -1^2 + 3/1$

(g) $f(x$

(a) Domain of
$$f$$
: $|X \in IR|$ (b) $|X \in IR|$ (c) $|X \in IR|$ (d) $|X \notin IR|$ (e) $|X \notin IR|$ (e) $|X \notin IR|$ (for $|X \notin IR|$ (e) $|X \notin IR|$ (for $|X \notin IR|$ (for